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A B S T R A C T

As engineered systems expand, become more interdependent, and operate in real-time, reliability assessment is
key to inform investment and decision making. However, network reliability problems are known to be #P-
complete, a computational complexity class believed to be intractable, and thus motivate the quest for ap-
proximations. Based on their theoretical foundations, reliability evaluation methods can be grouped as: (i) exact
or bounds, (ii) guarantee-less sampling, and (iii) probably approximately correct (PAC). Group (i) is well regarded
due to its useful byproducts, but it does not scale in practice. Group (ii) scales well and verifies desirable
properties, such as the bounded relative error, but it lacks error guarantees. Group (iii) is of great interest when
precision and scalability are required. We introduce -RelNet, an extended counting-based method that delivers
PAC guarantees for the -terminal reliability problem. We also put our developments in context relative to
classical and emerging techniques to facilitate dissemination. Then, we test in a fair way the performance of
competitive methods using various benchmark systems. We note the range of application of algorithms and
suggest a foundation for future computational reliability and resilience engineering, given the need for prin-
cipled uncertainty quantification across complex networked systems.

1. Introduction

Modern societies rely on physical and technological networks such
as transportation, power, water, and telecommunication systems.
Quantifying their reliability is imperative in design, operation, and
resilience enhancement. Typically, networks are modeled using a graph
where vertices and edges represent unreliable components. Network
reliability problems ask: what is the probability that a complex system
with unreliable components will work as intended under prescribed
functionality conditions?

In this paper, we focus on the -terminal reliability problem [1]. In
particular, we consider an undirected graph =G V E( , , ), where V is
the set of vertices, E⊆ V× V is the set of edges, and V is the set of
terminals. We let G(P) be a stochastic graph, where every edge e ∈ E
vanishes from G with respective probabilities =P p( )e e E . We assume a
binary system, and say G(P) is unsafe if a subset of vertices in be-
comes disconnected, and safe otherwise. Thus, given an instance (G, P)
of the -terminal reliability problem, we are interested in computing
the unreliability of G(P), denoted uG(P), and defined as the probability
that G(P) is unsafe.

If |Θ| is the cardinality of set Θ, then =n V| | and =m E| | are the
number of vertices and edges, respectively. Also, when = n| | and

=| | 2, the -terminal reliability problem reduces to the all-terminal
and two-terminal reliability problems, respectively. These are well-
known and proven to be #P-complete problems [1,2]. The more general
-terminal reliability problem is #P-hard, so ongoing efforts to com-

pute uG(P) focus on practical bounds and approximations.
Exact and bounding methods are limited to networks of small size,

or with bounded graph properties such as treewidth and diameter [3,4].
Thus, for large G of general structure, researchers and practitioners lean
on simulation-based estimates with acceptable Monte Carlo error [5].
However, in the absence of an error prescription, simulation applica-
tions can use unjustified sample sizes and lack a priori rigor on the
quality of the estimates, thus becoming guarantee-less methods.

A formal approach to guarantee quality in Monte Carlo applications
relies on the so-called (ϵ, δ) approximations, where ϵ and δ are user
specified parameters regarding the relative error and confidence, re-
spectively. As an illustration, for Y as a random variable (RV), say we
are interested in computing its expected value =E Y µ[ ] Y . Then, after
we specify parameters ϵ, δ∈ (0, 1), an (ϵ, δ) approximation returns es-
timate µY such that µ µPr(| / 1| )Y Y . In other words, an (ϵ, δ)
approximation returns an estimate with relative error below ϵ with at
least confidence 1 . We term Probably Approximately Correct (PAC)
the family of methods whose algorithmic procedures deliver estimates
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with (ϵ, δ) guarantees.1

Having a formal notion of error, we can rigorously address a key
issue in Monte Carlo applications: the sample size, herein denoted N.
Using standard probability arguments, and positive finite μY as the only
assumption,2 we derive: =N O µ( / log 1/ )Y Y

2 2 2 (see appendix,
Theorem 6), exposing Monte Carlo’s weakness when required to guar-
antee results. To make it self-evident, let us model our binary-system as
Y, a Bernoulli RV, such that =µ u P( )Y G . Then, note that the substitu-
tion of μY and Y

2 in N leads to N∝1/uG(P), which can be prohibitively
large as engineered systems are meant to be highly-reliable by design.

The sample size issue is a well researched subject of rare-event si-
mulation, and we refer readers to Chapter 2 [7] and Chapter 1 [8] for
more background. Attempts to make simulation more affordable in-
clude: the Multilevel Splitting method [9,10], the recursion-based Im-
portance Sampling method [11], the Permutation Monte Carlo-based
method [12] and its Splitting Sequential Monte Carlo extension [13],
among others. Some of these techniques verify desired properties, such
as the Bounded Relative Variance (BRV) or =µ O/ (1),Y Y

2 2 and the
Vanishing Relative Variance (VRV) or =µ o/ (1),Y Y

2 2 where Y denotes
the Monte Carlo estimate returned by a sampling technique.3 Despite
being effective in the rare-event setting, these methods often appeal to
the central limit theorem and do not assure quality of error or perfor-
mance, thus remaining guarantee-less to users.

Naturally, a method that overcomes the rare-event issue while de-
livering rigorous error guarantees would be of great use in reliability
applications. In other words, system reliability is calling for efficient
PAC methods for a rigorous treatment of uncertainties. Theoretically
speaking, an efficient method runs in polynomial time as a function of
the size of (G, P), 1/ϵ, and log (1/δ). In the computer science literature,
such a routine is called a fully polynomial randomized approximation
scheme (FPRAS) for network unreliability. Clearly, efficient in theory
does not imply efficient in practice, e.g., the order of the polynomial
function bounding the worst-time complexity can be arbitrarily large.
Thus, it is imperative to complement theoretically sound developments
with computer evaluations. To the best of our knowledge, there is no
known FPRAS for the -terminal reliability problem. However, there is
a precedent, where Karger gave the first FPRAS for the all-terminal
reliability case [14].

To tackle computational and precision issues, this paper develops
-RelNet, a counting-based PAC method for network unreliability that

inherits properties of state-of-the-art approximate model counters in the
field of computational logic [15]. Our approach delivers rigorous (ϵ, δ)
guarantees and is efficient when given access to an NP-oracle: a black-box
that solves nondeterministic polynomial time decision problems. The use
of NP-oracles for randomized approximations, first proposed by Stock-
meyer [17], is increasingly within reach as in practice we can leverage
efficient solvers for Boolean satisfiability (SAT) and treat them as oracles,
given they are under active development. Given the variety of methods
to compute uG(P), we showcase our developments against alternative
approaches. In the process, we highlight methodological connections
missed in the engineering reliability literature, key theoretical properties
of our method, and unveil practical performance through fair computa-
tional experiments by using existing and our own benchmarks.

The rest of the manuscript is structured as follows: Section 2 gives
background on network reliability evaluation and its (ϵ, δ) approx-
imation, as well as the necessary background on Boolean logic before
introducing our new counting-based approach: -RelNet, an efficient
PAC method for the -terminal reliability problem. Section 3 con-
textualizes our contribution relative to other techniques for network
reliability evaluation. We highlight key properties for users and draw

important connections in the literature. Section 4 presents the main
results of our computational evaluation. Section 5 rounds up this study
with conclusions and promising research directions.

2. Counting-based network reliability evaluation

We begin this section with relevant mathematical background and
notation, then we introduce the new method, termed -RelNet. We do
so through a fully worked out example for counting-based reliability
estimation.

2.1. Principled network reliability approximation

Given instance (G, P) of the -terminal reliability problem, we
represent a realization of the stochastic graph G(P) as an m-bit vector

=X x( ) ,e e E with =m E| |, such that =x 0e if edge e∈ E is in a failed
state and =x 1e otherwise. Note that = =x pPr( 0) ,e e and that the set of
possible realizations is = {0, 1}m. Furthermore, let Φ: Ω↦{0, 1} be a
function such that =X( ) 0 if some subset of becomes disconnected,
i.e. X is unsafe, and =X( ) 1 otherwise. Also, we define the failure and
safe domains as = =X X{ : ( ) 0}f and = =X X{ : ( ) 1},s
respectively. In practice, we can evaluate Φ efficiently using breadth-
first-search.

Network reliability, denoted as rG(P), can be computed as follows:

= =r P u P X X( ) 1 ( ) ( )·Pr( ),G G
X (1)

=X p pPr( ) ·(1 ) ,
e E

e
x

e
x(1 )

i
i

i
i

i

(2)

where Eq. (2) assumes independent edge failures. Clearly, the number
of terms =| | 2m of Eq. (1) grows exponentially, rendering the brute-
force approach useless in practice, and motivating the development of
network reliability evaluation methods that can be grouped into: exact
or bounds, guarantee-less simulation, and probably approximately
correct (PAC).

When exact methods fail to scale in reliability calculations, simu-
lation is the preferred alternative. However, mainstream applications of
simulation lack performance guarantees on error and computational
cost. Typically, users embark on a trial and error process for choosing
the sample size, trying to meet, if at all possible, a target empirical
measure of variance such as the coefficient of variation. However, si-
milar approaches have been shown to be unreliable [18], jeopardizing
reliability applications at a time when uncertainty quantification is key,
as systems are increasingly complex [19].

To secure a rigorous application of the Monte Carlo method, we use
(ϵ, δ) approximation methods, which use no assumptions such as the
central limit theorem, and that give guarantees of approximation in the
non-asymptotic regime, i.e., they deliver provably sound approxima-
tions with a finite number of samples. Formally, for input parameters ϵ,
δ ∈ (0, 1), we define a PAC method for network unreliability evaluation
as one that outputs estimate u P^ ( )G such that:

u P u P
u P

Pr |^ ( ) ( )|
( )

.G G

G (3)

Recently, the authors introduced RelNet [20], a counting based
framework for approximating the two-terminal reliability problem that
issues (ϵ, δ) guarantees. In this paper, we introduce -RelNet, an ex-
tension that, to the best of our knowledge, is the first efficient PAC
method for the general -terminal reliability problem.

Next, we survey important background in Boolean logic definitions
before introducing -RelNet.

2.2. Boolean logic

A Boolean formula ψ: X ∈ {0, 1}n→{0, 1} is in conjunctive normal

1 We borrow the PAC terminology from the field of artificial intelligence [6].
2 In this paper μY will be a probability, such as network unreliability uG(P).
3 Where the little-o notation =f n o g n( ) ( ( )) stands for f/g→0, for n > n0,

n n, 0 .
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form (CNF) when written as =X C C( ) ,m1 with each clause Ci a
disjunction of literals, e.g., = ¬C x x x1 1 2 3. We are interested in
solving the #SAT (“Sharp SAT”) problem, which counts the number of
variable assignments satisfying a CNF formula. Formally,

= =X X# |{ {0, 1} | ( ) 1}|n . For example, consider the expression
x1≠ x2. Its CNF representation is = ¬ ¬X x x x x( ) ( ) ( ),1 2 1 2 and
the number of satisfying assignments of ψ is =# 2.

Furthermore, for Boolean vectors of variables =X x x( , , )n1 and
=S s s( , , ),p1 define a 1

1 formula as one that is expressed in the form
=F X S S X S( , ) [ ( , )], with ψ a CNF formula over variables X and S.

Similarly, we are interested in its associated counting problem, called
projected counting or “# SAT.” Formally, =F X# |{ {0, 1}n

=S X S| such that ( , ) 1}|. We use 1
1 formulas because they

let us introduce needed auxiliary variables (S) for global-level
Boolean constraints, required in network reliability, but count
strictly over the problem variables (X). As an example, consider the
expression [(x1≠ x2) OR (s1≠ x2)]. Its CNF representation is

= ¬ ¬ ¬X S x s x x s x( , ) ( ) ( ),1 1 2 1 1 2 and note the difference
between the associated counts =# 6 and =F# 4. The latter is smaller
because the quantifier ∃ over variables S “projects” the count over
variables X. To better grasp this projection, observe that

=F X S S X S( , ) [ ( , )] is equivalent to which in our example simplifies
to ¬ ¬ =x x x x( ) ( ) 1,1 2 1 2 i.e., for every assignment of variables
X ∈ {0, 1}2, there is S ∈ {0, 1} such that =F X S( , ) 1, and thus =F# 4.
The equivalent form is shown only for illustration purposes, as it is
intractable to work with it explicitly due to its length growing ex-
ponentially in the number of variables in S. Instead, we feed

=F X S S X S( , ) [ ( , )] to a state-of-the-art approximate model
counter, such as ApproxMC3 [21].

Next, we introduce F , a 1
1 formula encoding the unsafe property of

a graph G, and show that =F# | |f . Recall Ωf is the network failure
domain = =X X{ : ( ) 0}f . Moreover, using a polynomial-time
reduction to address arbitrary edge failure probabilities, we solve the
-terminal reliability problem by computing F# . The problem of

counting the number of satisfying assignments of a Boolean formula is
hard in general, but it can be approximated efficiently via state-of-the-
art PAC counters with access to an NP-oracle. In practice, an NP-oracle
is a SAT solver capable of handling formulas with up to a million var-
iables—orders of magnitude larger than typical network reliability in-
stances.

2.3. Reducing network reliability to counting

Next we introduce the -RelNet formulation. Given propositional
variables =S s( )u u V and propositional variables =X x( ) ,e e E define:

=C s x s s x s e E[( ) ] [( ) ], ,e u e v v e u (4)

= = ¬F S X S S s s C[ ( , )] ,
j

j
k

k
e E

e
(5)

where in Eq. (4), each edge e ∈ E has end vertices u, v ∈ V. Propositional
edge variable xe encodes the state of edge e ∈ E, such that xe is true iff e
is not failed, which is consistent with the representation of a realization
of the stochastic graph G(P) introduced earlier. An example of F is
given in Fig. 1b and 1c. Note that F is a 1

1 formula,4 and we define its
associated set of satisfying assignments as

= =R X S X S{ |( ) ( , ) 1},F such that =F R# | |F . Also, recall
that the notation for the complement of set Θ is . The next Lemma
proves the core result of our reduction.

Lemma 1. For a graph G = V E( , , ), edge failure probabilities
=P p( ) ,e e E and F and Ωf as defined above, we have =F# | |f .

Moreover, for =P (1/2) ,e E1/2 we have

=u P F( ) #
2

.G E1/2 | |

Proof.We use ideas from our previous work [20], which deals with the
special case =| | 2. First, note that for sets A and B such that

+ = +A A B B| | | | | | | |, we have =A B| | | | iff there is a bijective mapping
from A to B . Moreover, the number of unquantified variables in Eq. (5)
is |E|, so we can establish the next equivalence between the number of
distinct edge variable assignments and system states:

+ = + =R R| | | | | | | | 2F F f f
E| |. Next, we prove

X R X X, {0, 1} ,F f
E| | via a bijective mapping.

1) Case Rf F : assume X ,f i.e. =X( ) 1 or G is -con-
nected. Next, we show that X R ,F i.e., F X S( , ) evaluates to false
for all possible assignments of variables S, due to Eqs. (4) and (5). We
show this by way of contradiction. Assume there is an assignment
S ∈ {0, 1}|V| such that F X S( , ) is true. We deduce this happens iff (i)

j k, such that sj≠ sk, from Eq. (5), and (ii) for every edge e ∈ E
with end-vertices u, v ∈ V we have =s 1v (resp. =s 1u ) whenever xe and
su (resp. sv) are equal to 1, due to clause Ce in Eq. (4). Without loss of
generality, we satisfy condition (i) setting =s 1j and =s 0,k with
j k, . Recall X ,f i.e. =X( ) 1, so there is a path

=P j k V{ , , } connecting vertices j k, and traversing edges T
⊆ E such that =x e T1,e . By iterating over constraints Ce, ∀e ∈ T,
and since =s 1,j we are forced to assign =s i P1, ,i to satisfy
condition (ii). This assignment results into =s 1,k which contradicts
condition (i) when we have set =s 0k at the beginning. Thus, an S ∈ {0,
1}|V| such that F X S( , ) is true does not exists, and X RF .

2) Case RF f : assume X R ,F i.e. F X S( , ) is false, to show
that X f . Again, by way of contradiction, we assume X ∈Ωf, i.e.

=X( ) 0. However, from RF f and the transitivity property in
the constraints of Eq. (4), we deduce that the set of edges

= =T e E x{ | 1}e connects every pair of vertices i j, , i.e. =X( ) 1
by definition of ϕ. Having reached a contradiction, we conclude
X f .

Since we established a bijective mapping between RF and ,f
we conclude =F# | |f . The last part of the lemma follows by
noting that =XPr( ) 1/2 E| | when =P P ,1/2 so that uG

= = =P X X F( ) (1 ( ))·Pr( ) | |·1/2 # /2X f
E E| | | |. □

Now we generalize =u P F( ) # /2G
E

1/2
| | to arbitrary edge failure

probabilities. To this end, we use a weighted to unweighted transfor-
mation [20].

2.4. Addressing arbitrary edge failure probabilities

The next definitions will be useful for stating our weighted-to-un-
weighted transformation. Let 0.b1⋅⋅⋅bm, with bi ∈ {0, 1), be the binary
representation of probability q ∈ (0, 1), i.e. = =q b /2k

m
k

k
1 . Define zk

Fig. 1. -RelNet example with = {a, b}. (a) Original instance, (b) its re-
duction to =p 1/2,e ∀e ∈ E′, and (c) exact counting F# .

4 Use identity (a∧b)→ c≡¬a∨¬b∨c for constraints Ce in Eq. (4).
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(z̄k) as the number of zeros (ones) in the first k decimal bits of the
binary representation. Formally, = =z k bk i

k
i1 and =z k z¯ ,k k

∀k ∈ L, with =L m{1, , }. Moreover, for = +V v v{ , , },z0 1m define a
function η: L→ V× V such that =k v v( ) ( , )z zk k1 if =b 0,k and

= +( )k v v( ) ,z z 1k m1 otherwise. We will show that, for =E k( )k L
and = +v v{ , },z0 1m G V E( , , ) is a series-parallel graph such that

=r P q( )G 1/2 . Thus, our weighted-to-unweighted transformation entails
replacing every edge e∈ E with a reliability preserving series-parallel
graph Ge where every edge fails with probability 1/2.

For example, from Fig. 1, the binary representation of =p1 5/8e2
is 0.101, so we have =m 3, =z 1,m and =z̄ 2m . Also, we replace edge
e2 with a series parallel graph Ge2 using the construction from above,
which yields =V v v v{ , , },e

0 1 22 =E v v v v v v{( , ), ( , ), ( , )},e
0 2 0 1 1 22 and

terminal set = v v{ , }e
0 22 . Since =u P( ) 3/8,G 1/2e2 we replace e2 by Ge2

as shown in Fig. 1, where =v a0 and =v c,2 for consistency with the
global labeling of the figure. The next lemma proves the correctness of
this transformation.

Lemma 2. Given probability =q b b0. m1 in binary form, graph
=G V E( , , ) such that = +V v v{ , , },z0 1m =E m{ (1), , ( )} and
= +v v{ , },z0 1m and edge failure probabilities =P (1/2) ,e E1/2 we have

=r P q( )G 1/2 and + = + +V E z m| | | | 2m .

Proof. Define =G V E k L( , ), ,k k k with =E k{ (1), , ( )}k and
= =V v v i{ : ( )}k i

k j j1 . Clearly, =V Vm and =E Em. The key
observation is that G is a series-parallel graph and that we can
enumerate all paths from v0 to +vz 1m in G. Let

= =k k L bmin{ : 1}k1 1 . Then, the edge set =E ET k1 1 forms a path
from v0 to +v ,z 1m denoted T1, with vertex sequence +v v v( , , , ),z z0 1k m1
size = +E z| | 1,T k1 1 and = +TPr( ) 1/2z

1
1k1 . Next, for k2 the second smallest

element of L such that =b 1,k2 Gk2 contains a total of two paths, T1 and
T2, with T1 as before and = +{( )}E E v v,T k z m 1k2 2 1 of size +z 1k2 . Also,

=E E Ek T T2 1 2 and = +{( )}E E E v v,T T T z m 1k1 2 1 1 . Thus, the event T T1 2
happens iff edge +( )v v,z m 1k1 fails and edges in ET2 do not fail, letting us
write = +T TPr( ) 1/2·1/2z

1 2
1k2 . For kj the j-th smallest element of L such

that =b 1,kj Gkj has a total of =j z̄kj paths, with
= = +{( )}E E v v, ,T k i

j
z m1

1
1j j ki = +E z| | 1,T kj k and = =E Ek i

j
T1j i.

Furthermore, event T T Tj j1 1 happens iff edges in = +{( )}v v,i
j

z m1
1

1ki
fail and edges in ETj do not fail. Thus,

= =+T T TPr( ) 1/2 ·1/2 1/2j j
z z k

1 1
¯ 1 1kj kj j. This leads to

= + + + = =( )r P T T T T T S( ) Pr( ) Pr( ) Pr 1/2G z z i
z k

1 1 2 1 ¯ 1 ¯ 1
¯

m m
m i.

Rewriting the summation over all k ∈ L yields = =r P b( ) /2 ,G k
m

k
k

1 which
is the decimal form of =q b b0. k m. Furthermore, = +V z| | 2m and

=E m| | from their definitions. □

Now we leverage Lemma 2 to introduce our general counting-based
algorithm for the -terminal reliability problem.

2.5. The new algorithm: -RelNet

-RelNet is presented in Algorithm 1. Theorem 3 proves its cor-
rectness. Fig. 1 illustrates the exact version beginning with the reduc-
tion to failure probabilities of 1/2, and rounding up with the con-
struction of F and exact counting of its satisfying assignments. In
Algorithm 1, however, we use an approximate counter giving (ϵ, δ)
guarantees [16].

Theorem 3. Given an instance (G, P) of the -terminal reliability problem
and M defined as in Algorithm 1:

=u P F( ) # /2 .G
M

Proof. The proof follows directly from Lemmas 1 and 2. First, note that
the transformation in step 1 of -RelNet outputs an instance (G′, P1/2)
so that =u P u P( ) ( ),G G 1/2 where P1/2 denote edges in E′ that fail with
probability 1/2 (Lemma 2). Then, step 2 takes G′ to output F such that

=u P R( ) | |/2G F
M

1/2 (Lemma 1). Finally, =u P R( ) | |/2G F
M . □

Steps 1–2 run in polynomial time on the size of (G, P). Step 3 in-
vokes ApproxMC2 [15] to approximate F# . In turn, ApproxMC2 has
access to a SAT-oracle, running in polynomial time on log 1/δ, 1/ϵ, and
F| |. Thus, relative to a SAT-oracle, -RelNet approximates uG(P) with
(ϵ, δ) guarantees in the FPRAS theoretical sense. Also, we note that
ApproxMC2’s (ϵ, δ) guarantees are for the multiplicative error

+ +u P u P u PPr(1/(1 ) ( ) ^ ( ) (1 ) ( )) 1G G G [15]. This is a
tighter error constraint than the relative error of Eq. (3), as one can
show that +1 1/(1 ) for ϵ ∈ (0, 1). Thus, if an approximation
method satisfies the multiplicative error guarantees, then it also sa-
tisfies the relative error guarantees. The converse is not true, and herein
we will omit this advantage of -RelNet over other methods for ease of
comparison. Moreover, a SAT-oracle is a SAT-solver able to answer
satisfiability queries with up to a million variables in practice. F has

+V E| | | | variables, thus facilitating implementation in practice. Given
-RelNet’s theoretical guarantees, we now provide context relative to

other existing methods, to then perform computational experiments
verifying its performance in practice.

3. Context relative to competitive methods

This section briefly contextualizes our work relative to competitive
techniques for network reliability evaluation, so as to facilitate the
comparative analyses in Section 4. We arrange methods into three
groups: exact or bounds, guarantee-less simulation, and probably ap-
proximately correct (PAC).

3.1. Group (i): exact or bounds

Network reliability belongs to the computational complexity class
#P-complete, which is largely believed to be intractable. This means
that the task of computing uG(P) efficiently is seemingly hopeless. While
of limited application, the most popular techniques in this group em-
ploy approaches such as state enumeration [22], direct decomposi-
tion [23], factoring [24], or compact data structures like binary-deci-
sion-diagrams (BDD) [3]. We refer the reader to the cited literature for
a survey of exact methods [22,25].

The intractability of reliability problems motivates exploiting
properties from graph theory. For example, in the case of bounded
therewidth and degree, there are efficient algorithms available [3,4].
Another promising family of methods issues fast converging
bounds [23,26], an approach that demonstrates practical performance
even in earthquake engineering applications [27], and that is applicable
beyond connectivity-based reliability as part of the more general state-
space-partition principle [28,29].

Input: Instance (G,P) and (ε, δ)-parameters.
Output: PAC estimate ˆuG(P).

1: ConstructG′ = (V′,E′,K) replacing every edgee ∈ E by Ge such that 1− pe = 0. b1 · · · bme and withrGe(P1/2) = 1− pe (Lemma
2).

2: Let M =
∑

e∈E me = |E′|, and constructFK usingG′ from Eq. 5.
3: Invoke ApproxMC2, a hashing-based counting technique [16], to compute#̂FK , an approximation of #FK with (ε, δ) guaran-

tees.
ûG(P)← #̂FK/2|M|

Algorithm 1. -RelNet.
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3.2. Group (ii): guarantee-less simulation

When exact methods fail to scale, guarantee-less simulations have
found wide applicability. In the context of unbiased estimators,5 a key
property is the relative variance µ/ ,Y Y

2 2 with Y a randomized Monte
Carlo procedure such that =E Y u P[ ] ( )G . From Theorem 6 (Appendix),
we know that should a method verify the bounded relative variance
(BRV) property, i.e., µ C/Y Y

2 2 for C some constant, then an efficient
(ϵ, δ) approximation is guaranteed with a sample size of

=N O ( log 1/ )2 . While certain methods verify the BRV property, the
value of C is typically unknown for general instances of the -terminal
reliability problem, and thus the central limit theorem is often invoked
for drawing confidence intervals despite known caveats [18]. Some
techniques verifying the BRV property include the permutation Monte
Carlo-based Lomonosov’s Turnip (LT) [8] and its sequential splitting
extension, the Split-Turnip (ST) [13], and the importance sampling
variants of the recursive variance reduction (RVR) algorithm [30]. They
significantly outperform the crude Monte Carlo (CMC) method in the
rare event setting, with RVR even displaying the VRV property in select
instances, as evidenced in empirical evaluations.

As we noted, the number of samples in the crude Monte Carlo ap-
proach scales like 1/uG(P), which can be problematic in highly-reliable
systems. A more promising approach leverages the Markov Chain
Monte Carlo method and the product estimator [31,32], where the
small uG(P) estimation is bypassed by estimating the product of larger
quantities. Significantly, the sample size roughly scales like log 1/
uG(P) [33]. The product estimator is popularly referred to as multilevel
splitting as it has independently appeared in other disciplines [34–36],
and even more recently in the civil and mechanical engineering fields
under the name of subset simulation [37]. In the case of network re-
liability, the latent variable formulation by Botev et al. [9], termed
generalized splitting (GS), delivers unbiased estimates of uG(P). The
similar approach by Zuev et al. [10] is not readily applicable to the
-terminal reliability and delivers biased samples, which makes it

problematic when one wants to rigorously assess confidence.

3.3. Group (iii): PAC methods

In a breakthrough paper, Karger gave the first efficient approx-
imation for the all-terminal network unreliability problem [14]. How-
ever, Karger’s algorithm is not always practical despite recent im-
provement [38]. Also, unlike -RelNet, Karger’s algorithm is not
readily applicable to the more general -terminal network reliability
problem.

Besides our network reliability PAC approximation technique,
-RelNet, which is specialized to the -terminal reliability problem,

there are general Monte Carlo sampling schemes that deliver (ϵ, δ)
guarantees. The reminder of this subsection highlights relevant
methods that are readily implementable in Monte Carlo-based network
reliability computations.

Denoting Y the random samples produced by unbiased sampling-
based estimators, traditional simulation approaches take the average of
i.i.d. samples of Y. Such estimators can be integrated into optimal
Monte Carlo simulation (OMCS) algorithms [39]. An algorithm A is said
to be optimal (up to a constant factor) when its sample size NA is not
proportionally larger in expectation than the sample size NB of any
other algorithm B that is also an (ϵ, δ) randomized approximation of μY,
and that has access to the same information as A, i.e., E[NA]≤ c · E[NB]
with c a universal constant.

A simple and general purpose black box algorithm to approximate
uG(P) with PAC guarantees is the Stopping Rule Algorithm (SRA)

introduced by Dagum et al. [39]. The convergence properties of SRA
were shown through the theory of martingales and its implementation
is straightforward (Algorithm 2).

Even though SRA is optimal up to a constant factor for RVs with
support {0, 1}, a different algorithm and analysis leads to the Gamma
Bernoulli Approximation Scheme (GBAS) [40], which improves the ex-
pected sample size by a constant factor over SRA and demonstrates
superior performance in practice due to improved lower order terms in
its guarantees. GBAS has the additional advantage with respect to SRA
of being unbiased, and it is relatively simple to implement. The core
idea of GBAS is to construct a RV such that its relative error probability
distribution is known. The procedure is shown in Algorithm 3, where I
is the indicator function, Unif(0, 1) is a random draw from the uniform
distribution bounded in [0,1], and Exp(1) is a random draw from an
exponential distribution with parameter = 1. Also, Algorithm 3 re-
quires parameter k, which is set as the smallest value that guarantees

< + >µ µ µ µPr( / ^ (1 ) or / ^ (1 ) )Y Y Y Y
2 2 with µ µ/ ^

Y Y
k kGamma( , 1) [40]. In practice, values of k for relevant (ϵ, δ) pairs

can be tabulated. Alternatively, if one can evaluate the cumulative
density function (cdf) of a Gamma distribution, galloping search can be
used to find the optimal value of k with logarithmic overhead (on the
number of cdf evaluations).

Note that SRA and GBAS give PAC estimates with optimal expected
number of samples for RVs with support {0, 1}, yet they disregard the
variance reduction properties of more advanced techniques. Thus, one
can ponder, is there a way to exploit a randomized procedure Y such
that Y Y CMC in the context of OMCS? The Approximation Algorithm
( ), introduced by Dagum et al. [39], and based on sequential
analysis [41], gives a partially favorable answer. In particular, steps 1
and 2 of Algorithm 4 are trial experiments that give rough estimates of
μY and µ/ ,Y Y

2 2 respectively. Then, step 3 is the actual experiment that
outputs u P^ ( )G with PAC guarantees. assumes Y∈ [0, 1], and it was
shown to be optimal up to a constant factor.

The downside of , or any OMCS algorithm as is optimal, is
that it requires in expectation =N O µ µ(max{ / , / }· ln 1/ )Y Y Y

2 2 2

samples. Thus, despite considering the relative variance µ/ ,Y Y
2 2 OMCS

algorithms become impractical in the rare-event regime. For example,
consider the case in which edge failure probabilities tend to zero and 1/
μY goes to infinity. If a technique delivers Y that meets the BRV prop-
erty, i.e., µ C/Y Y

2 2 for C some constant, then, from Theorem 6 (Ap-
pendix), we know a sample of =N O ( ln 1/ )2 suffices, meanwhile
N .

We will use GBAS for CMC with (ϵ, δ) guarantees, and use ,
given its generality, to turn various existing techniques into PAC
methods themselves. For , note that the rough estimate µ̂Y in step 1
is computed using YCMC as it is the cheapest, but from step 2 and on, the
estimator that is intended to be tested is used, with the reported run-
time being that of step 3 to measure variance reduction and runtime
without trial experiments using CMC.

4. Computational experiments

A fair way to compare methods is to test them against challenging
benchmarks and quantify empirical measures of performance relative to
their theoretical promise. We take this approach to test
-RelNet alongside competitive methods. The following subsections

describe our experimental setting, list implemented methods, and show
their application to various benchmarks.

4.1. Implemented estimation methods

Table 1 lists reliability evaluation methods that we consider in our
numerical experiments. Exact methods run until giving an exact esti-
mate or best bounds until timeout. Each guarantee-less simulation
method uses a custom number of samples N that depends on the shared
parameter NS (Table 1). This practice, borrowed from Vaisman

5 The quality of a guarantee-less method being unbiased is key, as boosting
confidence by means of repeating experiments leveraging the central limit
theorem would lack justification otherwise.
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et al. [13], tries to account for the varying computational cost of
samples among methods.

PAC algorithms or GBAS are used in combination with guar-
antee-less sampling methods to compare runtime given a target preci-
sion. For example, GBAS(YCMC) denotes Algorithm 3 when samples are
drawn from the CMC estimator. Experiments with use

=( , ) (0.2, 0.2). Experiments embedded in GBAS use two configura-
tions: (0.2,0.2) and (0.2,0.05). -RelNet uses (0.8,0.2) to avoid time
outs. As we will verify, in practice, PAC-methods can issue estimates
with far better precision than the input theoretical (ϵ, δ)-guarantees.

To the best of our knowledge, methods in Table 1 are some of the
best in their categories as evidenced in the literature. We implemented

all methods in a Python prototype6 for uniform comparability and ran
all experiments in the same machine—a 3.60 GHz quad-core Intel i7-
4790 processor with 32GB of main memory and each experiment was
run on a single core.

4.2. Estimator performance measures

We use the next empirical measures to assess the performance of
reliability estimation methods. Let û be an approximation of u. We
measure the observed multiplicative error ϵo as u u u(^ )/ if >u u^ , and
u u u(^ )/ ^ otherwise. Also, for a fixed PAC-method, target relative error

ϵ, and independent measures , , ,M
o
(1)

o
( ) we compute the observed

confidence parameter δo as =M1/ · (| | )i
M i

1 o
( ) . Satisfaction of (ϵ, δ) is

guaranteed, but ϵo and δo can expose theoretical guarantees that are too
conservative.

Furthermore, for guarantee-less sampling methods we measure ϵo
but not δo, as these do not support confidence a priori. Thus, we use
empirical measures of variance reduction to assess the desirability of
sampling techniques over the canonical method (CMC). Let

= µ µ N·(1 )/
Y Y Y
2

CMC be the variance associated to CMC, and let
Y
2

A

be the sample variance associated to method A. Clearly, >/ 1
Y Y
2 2

CMC A

will favor A over CMC. However, this is not the only important con-
sideration in practice. For respective CPU times Y CMC and ,Y A a ratio

</ 1Y YCMC A would imply a higher computational cost for A. To ac-
count for both, variance and CPU time, we use the efficiency ratio, de-

fined as =YER( ) / ·( / )A
Y Y Y Y
2 2

CMC A CMC A [43]. In practice, when ER

(YA) < 1, one prefers the more straightforward CMC. A similar mea-
sure in the literature is the work normalized relative variance [9], defined

as =Y µwnrv( ) / ,Y Y Y
2 2 which is related to the efficiency ratio via

=Y Y YER( ) wnrv( )/wnrv( )A CMC A . We prefer ER(YA) over wnvr(YA)
as it is a measure of adequacy of A over CMC, informing users on
whether they need to implement a more sophisticated method than
CMC.7

The next subsections introduce the benchmarks we use and discuss

Input: ε, δ ∈ (0,1) and random variableY.
Output: Estimate ˆuG(P) with PAC guarantees.
Let {Yi} be a set of i.i.d samples ofY.
Compute constantsΥ = 4(e− 2) log(2/δ)1/ε2, Υ1 = 1+ (1+ ε) · Υ.
Initialize S← 0, N← 0.
while (S < Υ1) do: N← N + 1, S← S + YN.
ûG(P)← Υ1/N

Algorithm 2. Stopping Rule Algorithm (SRA) [39].

Input: k parameter.
Output: Estimate ˆuG(P) with PAC guarantees.
Let {Yi} be a set of independent samples.
Initialize S← 0, R← 0, N← 0.
while (S , k) do

N← N + 1, B← I (Unif(0,1) ≤ YN)
S← S + B, R← R+ Exp(1)

end while
ûG(P)← (k− 1)/R

Algorithm 3. Gamma Bernoulli Approximation Scheme (GBAS) [40].

Input: (ε, δ)-parameters.
Output: Estimate ˆuG(P) with PAC guarantees.
Let {Yi} and{Y′i } be two sets of independent samples ofY.

1: ε′ ← min{1/2,√ε}, δ′ ← δ/3
µ̂Y ← SRA(ε′, δ′)

2: Υ← 4(e− 2) log(2/δ)1/ε2

Υ2 ← 2(1+
√
ε)(1+ 2

√
ε)(1+ ln(3/2)/ln(2/δ))Υ

N← Υ2 · ε/µ̂Y, S← 0
for (i = 1, . . . ,N) do: S← S + (Y′2i−1 − Y′2i)

2/2
r̂∗Y ← max{S/N, εµ̂Y}/µ̂2

Y
3: NAA ← Υ2 · r̂∗Y

for (i = 1, . . . ,NAA) do: S← S + Yi

ûG(P)← S/N

Algorithm 4. The Approximation Algorithm ( ) [39].

Table 1
Methods used in computational experiments, and corresponding parameters.

Group Methods IDs Parameters Ref.

i BDD-based network reliability HLL n/a [3,42]
ii Lomonosov’s-Turnip LT =N NS [8]

Sequential splitting Monte Carlo ST =B 100, =N N B/S [13]
Generalized splitting GS = = =s N N N2, 10 , S0 3 [9]
Recursive variance reduction RVR = ( )N N /S

| |
2

[30]

iii Karger’s 2-step Algorithm K2Simple ϵ, δ [38]
Optimal Monte Carlo simulation GBAS, ϵ, δ [39,40]
Counting-based network unreliability -RelNet ϵ, δ This paper

6 RelNet’s implementation can be found at https://github.com/meelgroup/
RelNet.

7 The ratio /
Y CMC Y A
2 2 in the ER is also the ratio of the relative variances of

Y CMC and YA, shedding light on how many times larger (or smaller) the sample
associated to CMC needs to be with respect to A from Theorem 6 (Appendix).
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results. Also, in our benchmarks we consider sparse networks, i.e.
=E O V| | (| |), which resemble engineered systems.

4.3. Rectangular grid networks

We consider N×N square grids (Fig. 2) because they are irre-
ducible (via series-parallel reductions) for N > 2, their tree-width is
exactly N, and they can be grown arbitrarily large until exact methods
fail to return an estimate. Also, failure probabilities can be varied to
challenge simulation methods. Our goal is to increase N and vary failure
probabilities uniformly to verify running time, scalability, and quality
of approximation. We evaluate performance until methods fail to give a
desirable answer. In particular, we consider values of N in the range 2
to 100, with the largest network being a 100×100 grid. Also, assume
all edges fail with probability 2 ,i for i {1, 3, ,15}. Furthermore, we
consider extreme cases of (Fig. 2), namely, all-terminal and two-
terminal reliability, and a -terminal case with terminal nodes dis-
tributed in a checkerboard pattern.

4.3.1. Exact calculations
For reference, we obtained exact unreliability calculations using the

BDD-based method by Hardy, Lucet, and Limnios [3], herein termed
HLL due to its authors. We computed uG(P) for =N 2, .,10 and all values
of pe. Fig. 3 shows a subset of exact estimates (a and b) and exponential
scaling of running time (c). Several other exact methods we studied and
referenced in Section 3, were used, but HLL was the only one that
managed to estimate uG(P) exactly for all N≤10. However, HLL be-
came memory-wise more consuming for N > 10. Thus, if memory is
the only concern, the state-space partition can be used instead to get
anytime bounds on uG(P) at the expense of larger runtime, but storing at
most O(|E|) vectors X ∈ {0, 1}m simultaneously [28]. Next, we use these
exact estimates to compute ϵo and ER for guarantee-less simulation
methods, and to compute ϵo and δo for PAC methods.

4.3.2. Guarantee-less simulation methods
Fig. 4 shows values of ϵo for the case of two-terminal reliability and

setting =N 10S
4. Most values are below the = 0.2o threshold. For RVR

we observed values of ϵo in the order of the float-point precision for the
largest values of i. We attribute this to the small number of cuts with
maximum probability (2–4 in our case) that, together with the fact that

RVR finds them all in the decomposition process, endows RVR with the
VRE property in this case. Conversely, other methods do not rely as
heavily on these small number of cuts.

Moreover, the CPU time varied among methods as shown in Fig. 5.
The only method whose single sample computation is affected by the
values of i is GS, consistent with the expected number of levels, which
scales as log 1/uG(P). However, matrix exponential operations for
handling more cases of i added overhead in LT and ST; the sharp time
increase from =N 5 to =N 6 is due to this operation, consistent with
findings by Botev et al. [9]. Instead, RVR does not suffer from numerical
issues and appears to verify the VRV property in this grid topology.

Also, to compare all methods in a uniform fashion we used the ef-
ficiency ratio (Fig. 6). Values of

Y
2

CMC for computing the efficiency ratio
are exact from HLL, and CPU time Y CMC is based on 104 samples. Es-
timates below the horizontal line are less reliable than those obtained
with CMC for the same amount of CPU time. In particular, we note that
for less rare failure probabilities (2 0.0087 ) some methods fail to
improve over CMC. Missing values for RVR show improvements above
107 in the efficiency ratio which, again, can be attributed to it meeting
the VRE property in these benchmarks. Furthermore, an interesting
result among simulation methods is that there is a downward trend in
their efficiency ratio as N grows. Thus, we can construct an arbitrarily
large squared grid for some N that will, ceteris paribus, yield an effi-
ciency ratio below 1 in favor of CMC. We attribute this to the time
complexity of CMC samples in sparse graphs, which can be computed in
O(|V|) time, whereas other techniques run in O(|V|2) time or worse.
Thus, the larger the graph the far greater the cost per sample by more
advanced techniques with respect to CMC.

4.3.3. Probably approximately correct (PAC) methods
Next, we embedded simulation methods in , except CMC which

was run usingGBAS because the latter is optimal for Bernoulli RVs such
as Y CMC. Fig. 7 shows the runtime for methods embedded into . We
were able to feasibly compute PAC-estimates for edge failure prob-
abilities of 2 0.035 or larger across all methods. The approximation
guarantees turned out to be rather conservative, obtaining far better
precision in practice. Variance reduction through can only reduce
sample size by a factor of O(1/ϵ) with respect to the Bernoulli case [i.e.
O u P( ( ) log )G

1 2 1 ], thus PAC-estimates with advanced simulation
methods using seem to be confined to cases where uG(P)≥ 0.005
for the square grids benchmarks. However, conditioned on disruptive
events such as natural disasters in which failure probabilities are larger,

can deliver practical PAC-estimates.
On the other hand, GBAS Y( )CMC turned out to be practical for more

cases, and the analysis used by Huber [40] seems to be tight as evi-
denced by our estimates of δo (Fig. 8, a and b). Yet, as expected, the
running time is heavily penalized by a factor 1/uG(P) in the expected
sample size as shown in Fig. 8(c).

Furthermore, we used -RelNet to approximate uG(P) in all cases of
thanks to our new developments. Fig. 9(b) shows runtimes as well as

Fig. 2. Example of an N×N grid graph, with =N 4. Darkened nodes belong to
the terminal set .

Fig. 3. (a-b) Exact estimates of uG(P) and (c) CPU time using HLL for all-, two-, and -terminal cases.
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(δo, ϵo) values for edge failure probability cases of 2 , 2 , 21 3 5. The
weighted to unweighted transformation appears to be the current bot-
tleneck as it considerably increases the number of extra variables in F .
However, note that, unlike K2Simple that is specialized for the all-
terminal case [Fig. 9(b)], -RelNet is readily applicable to any
-terminal reliability problem instance. Also, -RelNet is the only

method that, due to its dependence on an external Oracle, can exploit

on-going third-party developments, as constrained SAT and weighted
model counting are very active areas of research.8 Also, SAT-based
methods are uniquely positioned to exploit breakthroughs in quantum
hardware and support a possible quantum version of -RelNet [44].

Fig. 4. Multiplicative error ϵo for guarantee-less simulation methods in the two-terminal reliability case.

Fig. 5. CPU time for guarantee-less simulation methods in the two-terminal reliability case.

Fig. 6. ER for guarantee-less simulation methods in the two-terminal reliability case.

Fig. 7. CPU time for PAC-ized sampling methods via setting = = 0.2 (all-terminal reliability).

8 See past and ongoing competitions: http://satcompetition.org/.
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Furthermore, our experimental results suggest that the analysis of
both, K2Simple and -RelNet, is not tight. This is observed by values of
(ϵo, δo), which are far better than the theoretical input guarantees. This
calls for further refinement in their theoretical analysis. Conversely,
GBAS delivers practical guarantees that are much closer to the theo-
retical ones, as demonstrated in Figs. 8 and 10, where the target error
can be exceeded still satisfying the target confidence overall.

The square grids gave us insight on the relative performance of
reliability estimation methods. Next, we use a dataset of power trans-
mission networks to test methods on instances with engineered system
topologies.

4.4. U.S. power transmission networks

We consider a dataset with 58 power transmission networks in cities
across the U.S. A summary discussion of their structural graph prop-
erties can be found elsewhere [45]. Also, we considered the two-
terminal reliability problem. To test the robustness of methods, for each
instance (G, P), we considered every possible s, t ∈ V pair as a different
experiment. Thus, totaling ( )V| |

2 experiments per network instance. We
used a single edge failure probability across experiments of

= =p 2 0.125e
3 to keep overall computation time practical. Using HLL

and preprocessing of networks, we were able to get exact estimates for
some of the experiments. We used these to measure the observed
multiplicative error ϵo when possible. Computational times are reported
for all experiments, even if multiplicative error is unknown.

Fig. 11 shows PAC-estimates using GBAS. As expected, the variation
in CPU time was proportional to 1/uG(P). Furthermore, we used
-RelNet to obtain PAC-estimates and observed consistent values of

the multiplicative error (Fig. 12). In some instances, however, -Re-
lNet failed to return an estimate before timeout. We also tested simu-
lation methods setting =N 10S

3. Despite the lack of guarantees they
performed well in terms of ϵo and CPU time (Figs. 13 and 14, first 5
benchmarks for brevity). However, the efficiency ratio is reduced as the
size of instances grows.

4.5. Analysis of results and outlook

Exact methods are advantageous when a topological property is
known to be bounded. HLL proved useful not only for medium-sized
grids ( × =N N 100), but also it was instrumental when computing
exact estimates for many streamlined power transmission networks.
Our research shows that methods exploiting bounded properties, to-
gether with practical upper bounds, deliver competitive exact calcula-
tions for many engineered systems. In power transmission networks,
HLL was able to exploit their relatively small treewidth.

Among guarantee-less sampling methods, there are multiple paths
for improvement. In the cases of LT and ST methods, even when the
exponential matrix offers a reliable approach to compute the convolu-
tion of exponential random variables, numerically stable computations
represent the main bottleneck of the algorithms, which appears to be
useful mostly when both the network and edge failure probabilities are
large. Thus, future research could devise ways to diagnose these nu-
merical issues and fall-back to the exponential matrix only when
needed, or use approximate integration (as in Gertsbakh et al. [46]), or
use a more arithmetically robust algorithm (e.g. round-off algorithms
for the sample variance [47]). Moreover, GS was competitive but its
requirement to run a preliminary experiment with an arbitrary number
of trajectories N0 to define intermediate levels, and without a formal
guidance on its values, can represent a practical barrier when there is
no knowledge in the order of magnitude of uG(P). Future research could
devise splitting mechanisms that use all samples towards the final ex-
periments while retaining its unbiased properties. Finally, RVR was
very competitive; however, we noted that (i) the number of terminals
adds a considerable overhead in the number of calls to the minimum cut
algorithm, and (ii) its performance is tied to the number of maximum
probability cuts because larger cuts do not contribute meaningfully
towards computing uG(P). Future work could use Karger’s minimum cut
approximation [48] and an adaptive truncation of the recursion found
in the RVR estimator to address (i) and (ii), respectively. We are cur-
rently investigating this very issue and recognized the RVR estimator as

Fig. 8. (a-b) Multiplicative error for GBAS Y( )CMC setting = = 0.2, and (c) respective running time for various sizes.

Fig. 9. -RelNet (a) and K2Simple (b) CPU time and ϵo values for -terminal reliability case.
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an special, yet randomized, case of state-space partition algo-
rithms [28].

Among PAC-methods, we found GBAS to be tight in its theoretical
analysis and competitive in practice. Outside the rare-event regime,
since very small failure probabilities increase runtime, we contend that
the usage of PAC algorithms such as GBAS would benefit the reliability

and system safety community as they give exact confidence intervals
without the need of asymptotic assumptions and arbitrary choices on
the number of samples and replications. Karger’s newly suggested al-
gorithms demonstrated practical performance even in the rare-event
regime, yet it appears that their theoretic guarantees are still too con-
servative. Equipping K2Simple with GBAS at the first recursion level

Fig. 10. ϵo values and CPU time for GBAS Y( )CMC setting =( , ) (0.2, 0.05).

Fig. 11. Two-terminal reliability approximations in power grids using GBAS setting = = 0.2.

Fig. 12. Two-terminal reliability approximations in power grids using -RelNet with (0.8, 0.2).

Fig. 13. Multiplicative error in power grids for guarantee-less methods setting =N 10S
3.
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would instantly yield a faster algorithm for non-rare failure prob-
abilities. However, the challenge of proving tighter bounds on the re-
lative variance for the case of small failure probabilities remains. The
same argument on theoretic guarantees being too conservative extends
to -RelNet, which cannot be set too tight in practice. But we expect
-RelNet to gain additional competitiveness as orthogonal advances in

approximate weighted model counting continue to accrue. -RelNet
remains competitive in the non rare-event regime, delivering rigorous
PAC-guarantees for the -terminal reliability problem. Also, its SAT-
based formulation makes it uniquely suitable for quantum algorithmic
developments, at a time when major technological developers, such as
IBM, Google, Intel, etc., are increasing their investment on quantum
hardware [49].

5. Conclusions and future work

We introduced a new logic-based method for the -terminal re-
liability problem, -RelNet, which offers rigorous guarantees on the
quality of its approximations. We examined this method relative to
several other competitive approaches. For non-exact methods we em-
phasized desired relative variance properties: bounded by a polynomial
on the size of the input instance [fully polynomial randomized ap-
proximation scheme (FPRAS)], bounded by a constant (bounded re-
lative variance), or tending to zero (vanishing relative variance). We
also turned popular estimators in the literature into probably approxi-
mately correct (PAC) ones by embedding them into an optimal Monte
Carlo algorithm, and showed their practical performance using a set of
benchmarks.

Contrasting with non-exact methods, our tool, -RelNet, is the first
approximation of the -terminal reliability problem, giving strong
performance guarantees in the FPRAS sense (relative to a SAT-oracle).
Also, -RelNet gives rigorous multiplicative error guarantees, which
are more conservative than relative error guarantees. However, its
performance in practice remains constrained to not too small edge
failure probabilities (≈ 0.1), which remains practical when condi-
tioned on catastrophic hazard events. Thus, our future work will pursue

more efficient encoding and solution approaches, especially when edge
failure probabilities become smaller. Moreover, promising advances in
approximate model counting and SAT solvers will render -RelNet
more efficient over time, given its reliance on SAT oracles.

Embedding estimators with desired relative variance properties into
PAC methods proved to be an effective strategy to bridge the gap be-
tween existing engineering reliability work and principled approxima-
tions, but only when failure probabilities are not rare. Despite this re-
lative success, the strategy becomes impractical when uG(P) approaches
zero. Thus, future research can address these issues in two fronts: (i)
establishing parameterized upper bounds on the relative variance of
new and previous estimators when they exist, and (ii) develop new
PAC-methods with faster convergence guarantees than those of the
canonical Monte Carlo approach.

Overall, PAC-estimation is a promising yet developing approach to
system reliability estimation. Beyond the -terminal reliability pro-
blem, PAC methods can be used much more frequently as an alternative
to the less rigorous—albeit pervasive—empirical methods that study
variance through replications and asymptotic assumptions that appeal
to the central limit theorem. In fact, methods such as GBAS deliver
exact confidence intervals using all samples at the user’s disposal. In
future work, the authors will explore general purpose PAC-methods
that can be employed in the rare-event regime, developing a unified
framework to conduct reliability assessments with improved knowledge
of uncertainties and further promote engineering resilience and align it
with the measurement sciences.
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Appendix

Proof of sample size large enough to deliver ( , )-guarantees (Theorem 6)

The next two lemmas are useful towards proving Theorem 6. Lemma 4 shows how the variance in a Monte Carlo estimator reduces as a function
of the number of samples.

Lemma 4. For Y a random variable with mean μY and variance ,Y
2 define Yn as follows:

=
=

Y
n

Y1 ,n
i

n

i
1

with each Yi∼ Y and +n . Then, we have that =Y n Y
2 1 2
n .

Fig. 14. Running time for simulation methods setting =N 10S
3.
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Proof. The variance of Yn is:

=
=

E Y µ
E Y µ

[( ) ]
[ ] .

Y n Y

n Y

2 2

2 2
n n

n

Note that =µ µ ,Y Yn and using the property of linearity in the expectation operator, write:

=

= +

n
E Y Y µ

n
E Y E Y Y µ

1

1 [ ] .

Y
i j

n

i j Y

i

n

i
i j i j

n

i j Y

2
2

,

2

2
2

, :

2

n

Now, recall that every Yi is i.i.d as Y and = E Y µ[ ]Y Y
2 2 2. Then,

= +

= +

=

=

n
n E Y n n µ µ

n
E Y n µ n µ

n
E Y µ

n

1 ( · [ ] ( 1)· )

1 ( [ ] ( 1)· · )

1 ( [ ] )

1 .

Y Y Y

Y Y

Y

Y

2
2

2 2 2

2 2 2

2 2

2

n

□

Lemma 5 shows the link between the number of repetitions of a experiment and the success probability of the majority of repetitions. We will use
this argument for constructing a median-based estimate.

Lemma 5. Let X be a Bernoulli random variable with success probability s ∈ [0, 1]. Define the random variable:

=
=

X X ,r
i

r

i
1

with +r . Then, the probability of at most ⌊r/2⌋ successes is:

=
=

X r r
i

s sPr( /2) ( ) (1 )r
i

r
i r i

0

/2

Proof. The proof is straightforward if one realizes that Xr is a Binomial random variable with parameters s and r. The desired probability is the
cumulative distribution function evaluated at r/2. □

Next, we are ready to prove Theorem 6.

Theorem 6. For a random variable Y with mean μY and variance ,Y
2 and user specified parameters ϵ, δ ∈ (0, 1), it suffices to draw O µ( / log 1/ )Y Y

2 2 2 i.i.d
samples to compute an estimate µY such that:

µ µ
µ

Pr
| |Y Y

Y

Proof. From the well known Markov (or Chebyshev) inequality, we can write:

Y µ k
k

Pr(| | ) .Y
Y
2

2

For our purposes, we let =k µY with positive μY. Then, we write:

Y µ
µ µ

Pr
| |

.Y

Y

Y

Y

2

2 2

If we substitute Y by Yn such that =n
s µ(1 )
Y

Y

2

2 2 (Lemma 4), then:

=
Y µ

µ
n

µ
sPr

| | / 1 .n Y

Y

Y

Y

2

2 2

Since the experiment’s success probability is at least s, we boost it up to 1 via Lemma 5. First, let µY be the median of r samples of Yn. Then, note
that estimate µY “fails”—lays outside the interval μY(1 ± ϵ)—if and only if r/2 or more samples lay outside μY(1 ± ϵ). Thus, choosing s ∈ (0.5, 1),
the probability that µY fails is at most:
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= =

=

r
i

s s r
i

s s

s s r
i

s s
s s

( ) (1 ) ( ) (1 )

( )

( ) ·2
(4 4 )

i

r
i r i

i

r
r r

r

i

r

r r

r

0

/2

0

/2
/2 /2

2 /2

0

/2

2 /2

2 /2

We use the previous bound to choose r such that s s(4 4 )r2 /2 . In particular, for =s 3/4, we find:

=r 2
log(4/3)

log(1/ )

To recap: construct a single experiment Yn using =n O µ( / )Y Y
2 2 2 samples, repeat the experiment =r O (log 1/ ) times, and return median µY . Using

O µ( / log 1/ )Y Y
2 2 2 samples, we showed this procedure returns µY in the range (1 ± ϵ) · μY with at least probability 1 . □

The proof of Theorem 6 is adapted from Prof. Sinclair’s online lecture notes [50].
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