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Summary

Reliability and risk assessment of lifeline systems call for efficient methods
that integrate hazard and interdependencies. Such methods are computationally
challenged when the probabilistic response of systems is tied to multiple events,
as performance quantification requires a large catalog of ground motions. Avail-
able methods to address this issue use catalog reductions and importance
sampling. However, besides comparisons against baseline Monte Carlo trials in
select cases, there is no guarantee that such methods will perform or scale well in
practice. This paper proposes a new efficient method for reliability assessment of
interdependent lifeline systems, termed RAILS, that considers systemic perfor-
mance and is particularly effective when dealing with large catalogs of events.
RAILS uses the state-space partition method to estimate systemic reliability with
theoretical bounds and, for the first time, supports cyclic interdependencies
among lifeline systems. Recycling computations across an entire seismic catalog
with RAILS considerably reduces the number of system performance evalua-
tions in seismic performance studies. Also, when performance estimate bounds
are not tight, we adopt an importance and stratified sampling method that in
our computational experiments is various orders of magnitude more efficient
than crude Monte Carlo. We assess the efficiency of RAILS using synthetic net-
works and illustrate its application to quantify the seismic risk of realistic yet
streamlined systems hypothetically located in the San Francisco Bay Region.
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1 INTRODUCTION

Lifeline systems (LSs) are the backbone of modern societies, constantly powering essential activities and supplying for
basic needs. However, urban areas are growing denser and integrating with new technologies, which in turn increases
the load on LSs and renders them more interconnected. Hence, there is a need for assessing LSs' performance under
extreme events, such as earthquakes, while considering their increasing interdependencies. However, such a task is at
times computationally infeasible due to the scale of systems and the amount of scenarios to consider for guaranteeing
quality of estimates.
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1.1 Seismic risk assessment of lifelines
A key factor in seismic risk assessment is the need to consider intensity maps (IMPs) that are hazard consistent. This usu-
ally implies simulating a large number of IMPs that are consistent with ground motion models and earthquake sources
(ie, fault and background seismicity). Conventional sequential Monte Carlo simulation (MCS) of earthquake activity
requires a large number of simulation years to capture rare events, such as large-magnitude earthquakes of interest in
risk assessment. Thus, importance sampling (IS) methods have become popular.1 In particular, Jayram and Baker2 intro-
duced an IS approach that expanded the stratified sampling of source magnitudes3 to the simulation of inter-event and
intra-event residuals. Their approach generated hazard IMPs using IS and then damage maps (DMPs) based on compo-
nent fragilities to assess a transportation network performance metric. More recent work relies on optimization to reduce
the set of IMPs and DMPs.1,4,5 Nevertheless, some methods require a proxy metric that is not guaranteed to correlate
well with performance metrics or they do not exploit the network structure of LSs. In contrast, nonsimulation meth-
ods account for network structure as they decompose LSs to estimate their expected performance to arbitrary precision.
Such decomposition-based methods are in general independent of local fragilities, so results obtained for one IMP can be
“recycled” for other IMPs.6

Seismic hazard analysis and loss assessments quantify the probability of exceedance of monetary losses.1,4,5 While such
an assessment is outside the scope of this paper, we still demonstrate via computational experiments how our methodol-
ogy (detailed below) can be readily implemented for LSs risk analyses by considering a case study with tenths of thousands
of ground motions affecting the loss of interdependent LSs' services. While we only quantify the performance loss annual
exceedance probability in LSs, such reduced levels of performance could be associated to monetary loss. Moreover, and in
contrast to available methods in seismic risk contexts, we neither sample DMPs nor couple system performance assess-
ment to the generation of hazard scenarios. Our approach is rather modular in the sense that it can be supplied with
different hazards if respective fragilities are known for creating a catalog of fragility maps (FMPs), giving novel emphasis
on the less studied combinatorial structure of the LSs reliability problem as well as, in principle, facilitating loss estimation
provided that monetary losses are associated to the unavailability of lifeline services.

1.2 Reliability assessment of interdependent lifeline systems
The reliability and performance assessment of LSs continues to be an active area of research and a crucial aspect to
consider in the study of resilience.7,8 Typically, the scale of systems and complexity of analyses narrow the possibilities for
practitioners and researchers to sampling-based methods. However, a major limitation when using simulated samples,
is the difficulty of determining the precision of estimations,9 or that to do so one needs to conduct large computational
experiments or exploit particular problem structures.10 Furthermore, despite recent advancement,11 machine learning
algorithms remain problem- or site-specific. To overcome these limitations, few researchers rely on a combination of
analytical and sampling methods that estimate either exactly, within theoretical bounds, or within confidence intervals
the reliability of infrastructure systems.

An emerging approach for computing the reliability of LSs is based on the efficient state-space partition (SSP) method.12

State-space partition techniques decompose the space of possible states of a given system into subsets of feasible and
infeasible states (eg, link and cut sets for connectivity problems). In fact, this approach was first due to Doulliez and
Jamoulle13 in the context of multistate systems. Then Alexopoulos corrected the method,14 and it was further extended and
applied to stochastic versions of the shortest path, minimum spanning tree, maximum flow, and other classes of network
problems.12,15 Furthermore, noting that flow problems can be reduced to connectivity problems, the method introduced in
the work by Dotson and Gobien16 is a special case of multistate systems when reduced to binary systems for connectivity
analysis. We make this observation given that Dotson and Gobien's work is the basis for methods that were more recently
developed in the reliability and earthquake engineering community (eg, Li and He17 and Liu et al18). In this paper, we
show how the SSP method more comprehensively encompasses many methods that were developed independently, and
we improve and augment the capabilities of these methods for interdependent infrastructure system analyses.

Furthermore, one of the first attempts to study interdependent LSs using nonsimulation methods was conducted by
Kim, Kang, and Song.6 However, the previous work does not consider the bidirectional and cyclic case of interdependen-
cies among systems, which is challenging and essential to shed light on the vulnerability of interdependent LSs.

This paper presents a hazard-independent framework for risk assessment of lifelines that supports interdependencies
among systems. It requires hazard and fragility information to be synthesized into a catalog of FMPs. While this work
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uses a high-level integration of methodologies for risk assessment of interdependent networks, we improve or extend
methodologically each of the base methods here adopted. The core of our contribution can be summarized as follows:

• We provide a comprehensive review of decomposition methods that were developed independently for solving
network reliability problems, integrate them under the umbrella of the SSP method, and improve upon them.

• We introduce a new framework for general interdependent network reliability problems that responds to calls for
systemic performance assessment19 and that we term reliability assessment of interdependent lifeline systems (RAILS).

• We introduce new SSP algorithms poised for solving RAILS problems efficiently and showcase how RAILS can be
used for risk assessment when considering many FMPs (such as in seismic risk) using an approach that recycles
computations.

The remainder of this paper is structured as follows. Section 2 describes the estimation of seismic risk in LSs. Section
3 reviews the SSP method for network reliability and introduces a new framework for RAILS problems with efficient
algorithms for solving them. Section 4 presents computational experiments including a case study of seismic risk in test
networks to showcase the applicability of the new approach. Section 5 offers conclusions from this study and outlines
future research directions.

2 SEISMIC RISK ASSESSMENT

While most network reliability methods model component stochastic capacity using a discrete random variable with
associated probability mass function (pmf) that is system-homogeneous or system-heterogeneous (ie, components are
allowed to have different pmfs), we consider a more general case. We explicitly acknowledge that many hazard events can
be verified, and while the set of possible component states remain the same, the pmf associated to such component states is
allowed to have a different distributions under each hazard event. Such generalization is key to extend our reliability-based
framework to the risk estimation setting in an efficient manner. Herein, an ensemble of components′ pmfs under a single
hazard event is termed FMP. Most of previous work addresses network reliability in the single FMP setting. On the other
hand, most of previous work in risk assessment treats each FMP independently and focuses on reducing the number of
FMPs to be considered. In contrast, we seek no reduction but rather “recycle” the information we gain for every given FMP
across the whole catalog of FMPs, while preserving rigorous theoretical bounds. This section serves as an introduction to
a common approach to assess seismic risk and expected performance of LSs that results into a large number of FMPs to
be considered.

The general approach for seismic risk assessment consists of adopting a source model with characteristic information
for seismic events of interest, adopting a ground motion model, linking shaking intensities to damage states of structural
components with fragility curves, and finally quantifying system performance or eventually losses. The remainder of this
section expands on each of the risk assessment steps and discusses approaches in the literature to cope with the large
number of FMPs. Also, we describe a new approach that leverages efficient reliability estimation methods that can recycle
computations across the set of FMPs.

Seismic source model and catalog of earthquake scenarios (ESs). To conduct a seismic risk assessment on dis-
tributed infrastructure, we first need a stochastic earthquake event catalog. We require a description of potential ESs that
includes their associated source (eg, fault or area), magnitude, and annual event rate 𝜈.

Ground motion models and IMPs. For each ES, we can associate a ground motion model as follows:1

ln(Yz) = ln(Ȳz) + 𝜎z𝜀z + 𝜏z𝜂z, (1)

where Yz is the seismic intensity measure of interest (eg, spectral acceleration) generated by a known earthquake magni-
tude at a site z localized at a known distance from the event source. The first term is associated to the median value of the
seismic intensity, and it is computed using the seismogenic information of the associated source model. The second and
third terms are the intra-event and inter-event residuals, which are usually drawn from multivariate and univariate dis-
tributions, respectively. Furthermore, in this paper, we will call IMP a realization of Equation 1 for all sites of interest, and
we will consider a constant number, n, of IMPs for each ES, ESi, in the stochastic earthquake event catalog as in the work
by Miller and Baker.4 Therefore, the annual rate of each IMPij, such that j = 1, … ,n and associated to ESi, is 𝜔i𝑗 =

𝜈i
n

.
Fragilities and DMPs. Before estimating the system response to a seismic event, it is a common practice to estimate

local physical responses and then assess residual service at the system level. More specifically, fragility curves provide an
estimate of the probability Pr[DS|Yz] of a component at site z reaching a damage state DS given a seismic intensity level
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Yz. The combined knowledge of site intensities from IMPs and element fragilities enables sampling of damaged states for
every component of the system, hence called DMPs. These maps further enable evaluation of system-level performance
for each DMP realization. In this study, we will not generate DMPs, but rather treat the probabilistic space of the hazard
and of the system independently. Thus, we do not miss important configurations simulating DMPs, and our focus is on
efficiently handling the combinatorial space of stochastic system configurations.

As a summary, the conventional system risk assessment paradigm follows a sequential approach in which, for each ES,
inter- and intra-event residuals are sampled to generate a set of IMPs. Then, failure probabilities are estimated for each
system component using their site intensity measures from each IMP and fragility curves. Moreover, for each IMP and
their associated element fragilities, a set of DMPs is generated. Finally, the risk assessment is rounded up with a system
performance metric computation for each DMP. Figure 1 summarizes the nested structure of the traditional approach,
where k, l, and m denote the total number of ESs, the total number of IMPs for each ES, and the total number of DMPs
for each IMP, respectively. This approach requires a large amount of system performance evaluations that may not be
executable in practice. For this reason, many researchers have proposed optimization approaches that select a subset of
maps that preserve site conditions and are consistent with surrogate system performance metrics.1,4,5 However, our first
observation is that, when sampling, coupling the hazard space to the system space is unnecessary. Moreover, unless a
full enumeration of system states is performed before optimizing the selection of DMPs, the system space is not fully
available for selection of meaningful system states due to sampling limitations. Note that the number of distinct DMPs
grows exponentially in the size of the system. For instance, a system with 64 binary elements has 264 ≈ 1.8 × 1019 distinct
states.

In this paper, we consider stochastic multicommodity flow problems casted as a mixed-integer linear program to mea-
sure interdependent network system performance while making system performance computations affordable. Also, we
take a considerably different approach for handling large seismic catalogs with respect to existing methods in the sense
that we decouple sampling of the hazard space from the system space. More specifically, we decompose the set of possible
LSs states into feasible, infeasible, and unexplored subsets. The goal is to do so in such a way that explored subsets (fea-
sible and infeasible ones) account for most of the probability description of the hazard when transformed into element
fragilities (this also implies obtaining lower and upper bounded estimates of probabilistic system performance that are
tight). The decomposition approach we use is inherently computationally hard, meaning that full decompositions are only
attainable for relatively small systems; however, the algorithms we introduce here aim to produce tight bounds within a
few iterations of such algorithms. Furthermore, if slow convergence of bounds is unavoidable, we adopt an importance
and stratified sampling scheme on the remaining unexplored sets that has proven far more efficient than MCS.12 Our
more direct and decoupled treatment of the system's probabilistic state space with respect to previous studies allows us
to recycle all computations throughout the seismic catalog as well. The next section expands these concepts and reviews
the underlying mathematical principles.

3 RELIABILITY ASSESSMENT OF INTERDEPENDENT LIFELINE SYSTEMS

We begin this section with preliminaries on network reliability, including the notation that will be used throughout this
section. Next, we review the SSP method for single system reliability problems and show notable applications as well as
demonstrate how the SSP method comprehensively encompasses decomposition methods in literature. Along the way, we
introduce improvements and extensions to these methods by leveraging general principles of the SSP method. Then we
introduce a new framework for reliability problems that extends single system reliability to the system-of-systems (SOS)
setting and that we term RAILS. Moreover, we introduce new SSP algorithms poised to solve RAILS problems efficiently,
while considering interdependency constraints and enabling rapid estimates of systemic reliability with rigorous bounds.
Finally, we describe model capabilities of RAILS and its application for risk assessment.

FIGURE 1 Prevailing seismic risk assessment approach. ES, earthquake scenario; IMP, intensity map; DMP, damage map; PM,
performance metric
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3.1 Network reliability
Consider a stochastic infrastructure system k represented by a graph Gk(Vk,Ek). Assume an arbitrary labeling of com-
ponents  = {1, .., a} such that |Vk| + |Ek| = a. Herein, we will refer to an specific component by its label i ∈ ,
and whenever its distinction from node or link becomes important, we will use one-to-one mappings 𝜓 ∶ Vk →  and
𝜙 ∶ Ek → , respectively. We assume that component i ∈  can vary its capacity level ui as a discrete random vari-
able, taking values from the set {xi(1) < ... < xi(li)} with respective probabilities {pi(1), … , pi(li)} (its pmf), where li is
the number of capacity levels that component i ∈  can take. For example, in a transportation network, a component's
capacity level can model the number of available lanes in a bridge crossing. Furthermore, we can use a system-state vec-
tor representation based on component capacity levels X(v) = (x1(v1), … , xa(va)) or based on indices v = (vi, .., va). Then
the state-space Ω of the stochastic system, such as a practical lifeline network, is defined using the Cartesian product of
sets as follows:

Ω =
a⨂

i=1
{1, .., li} = {(v1, .., va) ∶ 1 ≤ vi ≤ li,∀i ∈ }. (2)

It is important to realize that the state-space Ω (Equation 2) has a hyper-rectangular structure of dimension a = ||.
Here, index vi = 1 stands for component's i ∈  lowest capacity level (eg, complete damage) and vi = li for its max-
imum capacity level (eg, no damage). Thus, vertices v = (1, … , 1) and v = (l1, … , la) are, respectively, the most
unfavorable and favorable states in terms of system performance. Furthermore, for infrastructure k, we can adopt an
appropriate performance metric19 in the form of utility function uk(v) to quantify its level of service. In practice, uk(v)
can be the number of connected terminals in a telecommunication network, the percentage of satisfied customers by a
power or water distribution system, or an inverse relation to travel times in a transportation network. Given a prescribed
performance threshold Dk, we can define the infeasible () and feasible () domains  = {v ∈ Ω ∶ uk(v) < Dk(v)} and
 = {v ∈ Ω ∶ uk(v) ≥ Dk(v)}, respectively.

The state-space definitions allow us to clearly define network reliability, denoted r, as the probability that system Gk will
perform at least at level Dk as follows:

r = Pr[v ∈  ] =
∑
v∈Ω

Pr[v]I (v), (3)

where I is the indicator function that outputs 1 if v is in the feasible domain  and 0 otherwise. Since the size of Ω
grows exponentially with the number of unreliable components, computing r from Equation 3 is unattainable even for
medium-size networks. Instead, one can use decomposition methods that estimate r in a more compact form.

3.2 The SSP method
The SSP method exploits the structure of Ω to decompose it into disjoint hyper-rectangular subsets Ii ⊆  and Fi ⊆ 

recursively. Let us call I and F the lists of disjoint infeasible subsets Ii ⊆  and feasible subsets Fi ⊆  that are obtained,
respectively, after decomposing Ω using an SSP algorithm. Also, any hyper-rectangular subset S ⊆ Ω can be described by 2
states 𝛼(S) = (𝛼i, … , 𝛼a) and 𝛽(S) = (𝛽 i, … , 𝛽a) such that S = {v ∈ Ω ∶ 𝛼i ≤ vi ≤ 𝛽i ,∀i ∈ }. We may use the notation
S = [𝛼, 𝛽] to refer to the hyper-rectangular subset S with lowest and highest capacity levels 𝛼 and 𝛽, respectively. We can
compute the probability of v ∈ S as12

Pr[v ∈ S] =
∏
i∈

𝛽i∑
𝑗=𝛼i

pi( 𝑗), (4)

where pi(j) are component's i ∈  discrete state probabilities (pmf) as described previously. Note that for valid pmfs,
Equation 4 yields Pr[v ∈ Ω] = 1. Using lists of disjoint subsets F (alternatively I) and Equation 4, we can compute r as
follows:

r =
∑
Fi∈F

Pr[v ∈ Fi] = 1 −
∑
Ii∈I

Pr[v ∈ Ii]. (5)

When estimating r, the efficiency of SSP algorithms depends heavily on the size of lists F or I. However, an attractive
feature of the SSP method is that it can be implemented for anytime algorithms that provide tighter upper and lower
bounds on r as they continue running. In general, an SSP algorithm begins with an empty list of feasible subsets F = [],
an empty list of infeasible subsets I = [], and a list of unexplored subsets U = [Ω]. Then it performs the following
decomposition to each unexplored set Ui− 1 removed from U:

Ui−1 = I∗i ∪ F∗
i ∪ U∗

i , (6)



6 PAREDES ET AL.

where I∗i ⊆ , F∗
i ⊆  , and U∗

i = Ui ⧵ (I∗i ∪ F∗
i ). At iteration i − 1, some sets in Equation 6 can result in empty sets,

and the superscripts “∗” are used to denote that sets may or may not be hyper-rectangular. Then derived sets are stored
into lists I, F, and U. However, it is important that before we move any disjoint set obtained from Equation 6 into lists I,
F, and U, we make such subsets hyper-rectangular by further partitioning them if not into that form already. A crucial
practical issue is that, when partitioning U∗

i into hyper-rectangular subsets Ui, we do not generate too many subproblems
Ui to be moved to U, since |U| is always a lower bound on the remaining number of iterations for full decomposition of Ω.
Previous research has devised ways to keep the number of subproblems generated up to a or less. Additionally, the way
in which SSP algorithms store and remove sets Ui ∈ U for further decomposition has major impact on their efficiency
(we will cover this subsequently). From partial decompositions of Ω, the following bounds hold

∑
Fi∈F

Pr[v ∈ Fi] ≤ r ≤ 1 −
∑
Ii∈I

Pr[v ∈ Ii]. (7)

We denote PU the gap between lower and upper bounds in the inequality above. State-space partition algorithms have
been implemented for many problems such as stochastic shortest path problems,20 multiterminal and multicommod-
ity flow problems,21 minimum spanning trees, and other classes of network flow problems.15 Regardless of the specific
problem, SSP algorithms exploit the problem structure of coherent systems to classify entire hyper-rectangular subsets of
Ω based on the knowledge of one feasible/infeasible state. Coherent systems exhibit a useful property in that if we select
any 2 states v′, v ∈ Ω such that v′i ≥ vi for all i ∈ , ie, system-state v′ has components with capacity levels greater or
equal to state v, then it always holds that uk(v) ≤ uk(v′). In other words, uk(·) is monotonic with respect to component
reliabilities.22 Intuitively, this means that if a subset of components is failed, yet the system as a whole is safe, then any
state with same nonfailed components but less failures is also safe. A symmetric argument can be drawn for an unsafe
system with a subset of nonfailed components. Next, we review 2 important SSP algorithm strategies.15

Feasible-based SSP (F-SSP): The first approach aims at deriving a large feasible set at every iteration of Equation 6. We
begin exploring U0 = Ω from a state that we know is feasible, say v = 𝛽(U0). Note that if v is infeasible, from coherence
of uk(·), the whole state-space is infeasible and it is trivial to compute r = 0. Starting from v, we use a problem-specific
subroutine feasible_v0(v, 𝛼, 𝛽) to derive a deeper state v0 ≤ v that is also feasible. We defer the specific implementation of
feasible_v0(·) for particular problems covered later in this section. Using this procedure at any iteration i − 1 of Equation 6
and provided that v is feasible, we can derive a disjoint hyper-rectangular subset F∗

i = [v0, v] = Fi that contains feasible
states and with extreme vertices 𝛼(Fi) = v0 and 𝛽(Fi) = v. Also, we let I∗i be the empty set and U∗

i = Ui−1⧵Fi. In particular,
U∗

i is not guaranteed to be hyper-rectangular, and thus, we need to further partition it into disjoint hyper-rectangular sets.
We can partition U∗

i into disjoint hyper-rectangular subsets U(i,j) as follows:12

U(i,𝑗) = {v ∈ Ω ∶ v0
q ≤ vq ≤ 𝛽q for q < 𝑗,

𝛼𝑗 ≤ v𝑗 < v0
𝑗

for q = 𝑗, (8)

𝛼q ≤ vq ≤ 𝛽q for q > 𝑗}, 𝑗 ∈ .

For some advanced iteration i − 1 > 0, we may find that 𝛽(Ui− 1) is infeasible. In such cases, we let I∗i = Ii = Ui−1,
and let remaining subsets in Equation 6 be empty sets. At the end of each iteration, we move all derived nonempty sets
Fi, Ii, and U(i,j) for all 𝑗 ∈  to respective lists F, I, and U. Each iteration proceeds removing a subset Ui− 1 from U until
there are no unexplored subsets left or until the bounds on r yield enough precision. Algorithm 1 outlines steps for a full
decomposition of Ω using a feasible-based SSP strategy with the possibility of early termination should PU be less than
the target gap tolerance.

Infeasible-based SSP (I-SSP): This approach proceeds symmetrically to the F-SSP; however, we outline the main
steps here for completeness. At any iteration i − 1, we begin at state v = 𝛼(Ui− 1). If v = 𝛼(Ui− 1) is feasible, we let
F∗

i = Fi = Ui−1, and let remaining subsets in Equation 6 be empty sets (trivial case). Otherwise, we use a problem-specific
routine infeasible_v0(v, 𝜶, 𝜷) to derive a deeper state v0 ≥ v that is also infeasible. Then we let I∗i = Ii = [v, v0], and
U∗

i = Ui−1 ⧵ Ii is decomposed into hyper-rectangular subsets using the analog to Equation 8 as follows:

U(i,𝑗) = {v ∈ Ω ∶ 𝛼q ≤ vq ≤ v0
q for q < 𝑗,

v0
𝑗
< v𝑗 ≤ 𝛽𝑗 for q = 𝑗, (9)

𝛼q ≤ vq ≤ 𝛽q for q > 𝑗}, 𝑗 ∈ .
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Nonempty subsets U(i,j) are moved to U. We extract a new subproblem from U and repeat this process until U
is empty or until PU is small enough. Algorithm 2 outlines the steps for fully or partially decomposing Ω using an
infeasible-based SSP.

Implementation remarks: Any subset S ⊆ Ω can be stored with only 2 vectors of indices, namely, 𝛼(S) and 𝛽(S).
However, for very large networks, storing all disjoint subsets Fi ∈ F and Ii ∈ I in the main memory is not practical. If
storage in external memory is not possible, one can simply store lower and upper bounds. In particular, one can initialize
lower bound PF = 0 and upper bound PI = 1 and replace steps 9 and 14 in Algorithms 1 and 2 with corresponding
update rules PF ← PF +Pr[v ∈ Fi] and PI ← PI −Pr[v ∈ Ii].12 However, when considering many FMPs, discarding subsets
in F and I can result into a considerable amount of recomputation.

A crucial issue when implementing SSP algorithms concerns appropriate handling of U, as in certain cases, it can
result into |U| that is intractably large. It has been pointed out that SSP algorithms work in a branch-and-bound
fashion.12,23 Therefore, a way to better describe the previous issue is to use a tree-like representation among unex-
plored subsets. For example, when removing the first input subset Ui− 1 from U and decomposing it (Equation 6),
we expect to generate at most a new subproblems U(i,j) (Equations 8 and 9) to be pushed into U. In fact, numeri-
cal experiments have shown that a depth-first-search (DFS) strategy keeps |U| small. On the other hand, prioritizing
the exploration of subproblems with largest probability Pr[v ∈ Ui] will shrink bounds in Equation 7 faster, but
potentially incur into large |U| during the decomposition process. In practice, a DFS strategy is implemented with a
last-in-first-out (LIFO) policy when handling U, whereas prioritizing exploration of Ui ∈ U with largest probability
is implemented with a Heap data structure.20 Moreover, the literature shows another strategy based on recursion in
the context of s-t network reliability.17 While this recursion is essentially a DFS strategy (explore first child problem
first) that yields slow convergence of Equation 7, it does a slightly worst job at keeping |U| small than using a simple
LIFO policy, as shown in our numerical experiments; we will refer to this strategy as Recursion. Additionally, priori-
tizing the removal of subset Ui ∈ U with largest probability was independently suggested by other researchers.24 The
extract and push steps in Algorithms 1 and 2 will assume a preset strategy for handling U (namely, LIFO, Recursion,
or Heap).

Also, Lim and Song24 introduced a new technology to speed up convergence of Equation 7. In the context of
s-t network reliability and using an F-SSP algorithm with Heap handling of U, Lim and Song proposed finding a
deeper state v0 that maximizes the reliability of the path connecting s and t, which in turn yields Fi = [v0, 𝛽] that
shrinks PU faster. To find the most reliable path, they introduce a modified Dijkstra's algorithm. However, later in this
section, we will show a generalization of this approach that needs no modified algorithms and applies to multistate
systems.
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Lastly, any undirected link (i, j) ∈ Ek can be handled in our framework by augmenting Ek to contain both (i, j) and
(j, i) such that i, j ∈ Vk and substituting any appearance of 𝜙 by a many-to-one mapping 𝜙′ such that 𝜙′(i, j) = 𝜙′(j, i),
ie, links (i, j) and (j, i) have the same label. Note that when there are undirected edges, we update our definition of a, the
number of components, to a = || such that reversed edges in Ek sharing labels are counted once.

3.3 Notable network reliability problems
This subsection illustrates the SSP method in the context of classic network reliability problems. These problems have
been used for quantifying probabilistic performance of LSs, and before extending such analyses to our SOS case, we
show how we can formulate classical network reliability problems in a generalized form using the SSP method. We will
make connections in literature that have been overlooked to date and show example applications. However, to make this
exposition more amenable, we will introduce the following notation for any hyper-rectangular subset S ⊆ Ω. In particular,
for a hyper-rectangular subset of Ω defined as S = {v ∈ Ω ∶ 𝛼i ≤ vi ≤ 𝛽i ,∀i ∈ } where 𝛼, 𝛽 ∈ Ω are the farthest diagonal
vertices in S such that 𝛼 ≤ 𝛽, we will write S = Ω[𝛼1 ∶ 𝛽1, … , 𝛼a ∶ 𝛽a] with 𝛼i ∶ 𝛽 i standing for the discrete interval
[𝛼i, 𝛽 i] = {vi ∈ {1, … , li} ∶ 𝛼i ≤ vi ≤ 𝛽 i} in dimension i ∈ . Additionally, we consider the following convention for
short-hand notation of entries 𝛼i ∶ 𝛽 i. If 𝛼i = 1, then we will omit 𝛼i. Similarly, if 𝛽 i = li, then we will omit 𝛽 i. On the
other hand, if 𝛼i = vi = 𝛽 i, then we may substitute 𝛼i ∶ 𝛽 i by simply vi. We will exemplify this notation after its first
usage below.

Source-terminal network reliability: This problem has been proven to be #P-complete,25 and it concerns computing
the probability of finding a path between nodes s and t such that s, t ∈ Vk given that links can fail with known probability
pe. To adapt the exposition of Section 3.1, we assume that every link (ea, eb) ∈ Ek labeled i = 𝜙(ea, eb) can fail and that it
has capacity ui ∈ {xi(1) < xi(2)} = {0 < 1} with respective probabilities {pi(1), pi(2)} = {pe, 1 − pe}, ie, Pr[xi(1)] = pe
and Pr[xi(2)] = 1 − pe are its capacity pmf. Also,  keeps labels for links only, given that nodes are perfectly reliable.

SSP algorithms find paths and cuts between s and t and decompose Ω into disjoint sets that are known to contain
s-t–connected (feasible) and s-t–disconnected (infeasible) states. For example, consider the 4-node network with 5 links
in Figure 2A. Let us arbitrarily choose an F-SSP strategy with a Recursion handling of U to compute r. Since only links
can fail, we consider labeling  = {1, 2, 3, 4, 5} as shown in Figure 2A. Remember that at the beginning, F and I are
empty, and U = [Ω]. For the first iteration i = 1 (Algorithm 1), we extract the last subset in U and let 𝛼 and 𝛽 be
the lowest and highest capacity levels, respectively, within U0 = Ω = {1, 2}5. Remember that v ∈ Ω is a vector of
indices, where v1 = 1 means that link labeled 1 has capacity u1 = x1(1) = 0 (ie, is failed) and v1 = 2 means that
capacity u1 = x1(2) = 1 (ie, is not failed). After verifying that 𝛽 = (2, 2, 2, 2, 2) is feasible, ie, there is a path between
nodes s and t when all links are not failed, we set v = 𝛽. Let us show how to find a deeper state v0 using subroutine
feasible_v0(v, 𝛼, 𝛽) for the case of s-t connectivity. A shortest path sequence at state v can be obtained using Dijkstra's
algorithm while assuming equal link weights. Consider the shortest path sequence traversing links {1, 4}. For every link
labeled i ∈  that appears in the shortest path sequence, we assign v0

i = vi, and for all other links i ∈  not in the
sequence, we set v0

i = 𝛼i. Then we obtain v0 = (2, 1, 1, 2, 1) and let F∗
1 = F1 = [v0, v] = [(2, 1, 1, 2, 1), (2, 2, 2, 2, 2)], or

more compactly F1 = Ω[2, ∶, ∶, 2, ∶] using our notation. Note that F1 is a feasible hyper-rectangular subset of Ω, while
I∗1 from Equation 6 is the empty set in this iteration. We now obtain 2 disjoint nonempty subsets U(0,j) from Equation 8,
namely, U(0,1) = Ω[1, ∶, ∶, ∶, ∶] and U(0,4) = Ω[2, ∶, ∶, 1, ∶]. At the end of this iteration, we move F1 to list of feasible sets F
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FIGURE 2 (A) Example network and decomposition trees obtained via (B) feasible-based state-space partition (F-SSP) and (C)
infeasible-based state-space partition (I-SSP). Rectangles indicate feasible subsets in F, and ellipses indicate infeasible subsets in I

and push U(0,1) and U(0,4) to the back of list of unexplored subsets U in reversed order; ie, U = [U(0,4),U(0,1)]. We continue
decomposing Ω with iteration 2 using the last input subset from U, this is U1 = U(0,1). We set v = 𝛽(U1) = (1, 2, 2, 2, 2)
and find a deeper state v0. Note that link 1 is failed in subproblem U1. Using subroutine feasible_v0(v, 𝛼, 𝛽) as showed
earlier, we find v0 = (1, 2, 1, 1, 2). Thus, F∗

2 = F2 = [v0, v], I∗2 is empty, and U∗
2 is derived again from Equation 8, which

yields subsets U(1,2) = Ω[1, 1, ∶, ∶, ∶] and U(1,5) = Ω[1, 2, ∶, ∶, 1]. We move F2 to F and push U(1,2) and U(1,5) to the back of
U in reversed order; this is U = [U(0,4),U(1,5),U(1,2)]. If we continue with iteration 2 using subproblem U2 = U(1,2), we find
that 𝛽(U2) is infeasible; thus, we can set I∗3 = I3 = U2 while sets F∗

3 and U∗
3 are empty. When we carry-on this process until

U is empty, we fully decompose the state-space Ω into disjoint feasible subsets Fi ∈ F and infeasible subsets Ii ∈ I. The
full decomposition can be visualized with an event tree (Figure 2B), where tree nodes and leaf nodes represent feasible
subsets and infeasible subsets, respectively.26 Note that the tree (Figure 2B) shows a subset Ui− 1 above derived subsets Fi
or Ii to illustrate their origin subproblem.

In the previous example, the removal of last subset in U for new subproblem decomposition and reversed-order-pushing
of subsets U(i,j) in U was used to model a recursive decomposition approach (Figure 2B). Thus, an F-SSP algorithm with
Recursion handling of U results into the method proposed by Li et al.17 Moreover, an implementation of an I-SSP algorithm
with Recursion handling of U results into the method introduced by Liu et al.18 However, adopting a Recursion strategy
is almost never advised. Alternatives, such as the LIFO strategy without reversed-order-pushing results into smaller |U|
when space complexity is a concern, and the priority heap results into faster bounds convergence when narrowing PU is
the main concern, as confirmed in our numerical experiments and the literature.20

Two-terminal feasible-flow network reliabilty: Perhaps the earliest flow reliability related work was by Frank et al27

in the context of telecommunication networks; however, the case of 2-terminal maximum flow with link capacities as dis-
crete random variables was formalized by Evans28 using a graph theory approach. Most methods for solving this problem
rely on a priori enumeration of minimal paths and minimum cuts.29 Nevertheless, the SSP method introduced by Doulliez
and Jamoulle,13 corrected by Alexopoulos14 and extended by Jacobson,15 does not require precomputation and exhibits
superior performance in various applications.

To adapt this problem to formulae in Section 3.1, we assume every link i ∈  has capacity levels ui ∈ {xi(1) < ... <

xi(li)} with respective probabilities {pi(1), … , pi(li)}. Here, the utility function uk(v) measures the maximum flow from
s to t for s, t ∈ Vk, and there is a performance threshold Dk such that for uk(v) < Dk, we say v ∈ Ω is infeasible, and
feasible otherwise.

State-space partition algorithms compute maximum s-t flows and minimum s-t cuts. Again, as example application, we
consider the bridge network in Figure 2A, link capacity levels ui ∈ {0 < 1}with respective probabilities {pe, 1 − pe}, and
performance threshold Dk = 1. This time, we arbitrarily choose an I-SSP algorithm with LIFO handling of U. We begin
with F = [], I = [] and U = [Ω]. The first iteration starts extracting the last subset from U and setting [𝛼, 𝛽] = U0 = Ω.
Efficient maximum flow and minimum cut algorithms can be found elsewhere.30 After verifying that 𝛼 is infeasible (ie,
the maximum flow from s to t is less than 1), we set v = 𝛼. An implementation of infeasible_v0(v, 𝛼, 𝛽) for deriving a
deeper state v0 is as follows. Compute the minimum s-t cut Ck(v) ⊆ , say Ck(v) = {1, 2}, and raise the capacity levels of
the components outside the cut to their maximum capacity levels (v0

i = 𝛽i,∀i ∉ Ck(v)) while the capacities of components
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in Ck(v) are raised from v0
i = vi towards 𝛽 i such that the sum of capacities ui∀i ∈ Ck(v) is always below the performance

threshold Dk. Since raising the capacity level of any component in Ck(v) would result into feasibility, for this iteration,
we directly find v0

i = vi,∀i ∈ Ck(v). Then we set I1 = [v, v0] = Ω[1, 1, ∶, ∶, ∶] and move it to I and derive nonempty
unexplored subsets U(1,1) = Ω[2, ∶, ∶, ∶, ∶] and U(1,2) = Ω[1, 2, ∶, ∶, ∶] (using Equation 9) and push them at the end of U
in that order; thus, U = [U(0,1),U(0,2)]. We proceed extracting the last subset from U and set [𝛼, 𝛽] = U1 = U(0,2). We
verify that 𝛼 is infeasible and set v = 𝛼. Using the subroutine infeasible_v0(v, 𝛼, 𝛽), we derive v0 = (1, 2, 2, 2, 1). Thus,
I2 = Ω[1, 2, ∶, ∶, 1], and Equation 9 yields a single nonempty subset U(1,5) = Ω[2, 1, ∶, ∶, 2] that we push to the end of U.
The next iteration takes the last subproblem [𝛼, 𝛽] = U2 = U(1,5), where 𝛼 is feasible, and thus, we set F2 = [𝛼, 𝛽]. When
carrying on this process until U is empty, we obtain all disjoint subsets Ii ∈ I and Fi ∈ F represented in the event tree of
Figure 2C. In contrast to Figure 2B, I-SSP algorithms derive infeasible subsets at tree nodes and feasible sets at leaf nodes.

Note that in the previous example, we used a LIFO handling of U, resulting into a different numbering order of subsets
with respect to Figure 2B. Also, note that the previous example represents a reduction to the s-t network reliability due
to unit-demand and unit-capacity links. Besides simplicity, this is to stress that literature of multistate systems has been
available for some time, and overlooking such advancements leads to independent developments of reliability methods for
binary systems with substantial overlapping (eg, I-SSP using Recursion18). Also, with coherence as an assumption, Barlow
et al22 generalized the theory of binary systems to multistate systems in which the system can have different performance
levels.

Besides network reliability problems mentioned in this subsection, Jacobson15 studied stochastic spanning trees in
a setup that includes the well-known all-terminal reliability problem as a specific case. Also, Daly21 studied stochastic
multiterminal and multicommodity network flow problems.

3.4 RAILS: a new framework for interdependent network reliability problems
In this subsection, we extend the single system network reliability problem to the SOS. We term the new framework RAILS.
Consider a set of infrastructures K represented as stochastic graphs Gk(Vk,Ek),∀k ∈ K and the ensemble G(V,E) with set
of nodes V = ∪k∈KVk and set of links E = ∪k∈KEk. As before, we consider an arbitrary labeling of all components in
the ensemble  = {1, .., a} with a = |V| + |E| and use one-to-one mappings 𝜓 ∶ V →  and 𝜙 ∶ E →  whenever we
require specifying node or link labels, respectively. The state-space Ω in the SOS setting is equally defined in Equation 2.
In Section 3.1, we relied on system-specific utility function uk(·) and performance threshold Dk to define the feasible and
infeasible domains as well as computing network reliability r (Equation 3). Let us now introduce the widely used structure
function SFk ∶ Ω → {0, 1} such that SFk(v) outputs 1 if uk(v) ≥ Dk and 0 otherwise. A very simple extension of the
structure function to the SOS case is SF(v) =

∏
k∈K SFk(v) with v ∈ Ω. Despite the simplicity of SF(·), it requires input

from various stakeholders to establish acceptable performance level thresholds Dk for all infrastructure services k ∈ K
during contingencies. The systemic reliability, denoted R, is the probability that all performance thresholds Dk,∀k ∈ K
can be met. We can estimate R as follows:

R = Pr[SF(v) = 1] =
∑
v∈Ω

Pr[v]I (v) = 1 −
∑
v∈Ω

Pr[v]I(v), (10)

where  is the feasible domain  = {v ∈ Ω ∶ SF(v) = 1},  is the infeasible domain  = {v ∈ Ω ∶ SF(v) = 0}, and I (·)
is the indicator function that outputs 1 if v is in the domain S and 0 otherwise. Estimating R from Equation 10 poses the
same computational challenges described in Section 3.1 for Equation 3. Thus, we can use efficient methods such as the
SSP method for bounding R with similar inequalities to Equation 7.

In this paper, we consider the problem of feasible multicommodity flows with interdependency requirements and
use a mixed-integer linear program to model it. The motivation for using mathematical programming is twofold. First,
many practical applications in reliability and systems engineering can be stated as a network flow–based formulation
where mathematical programming can serve as a common language across disciplines when considering interdependent
systems.31 Also, network design of interdependent networks as well as their joint restoration has been modeled using a
similar structure.32-34 Second, optimization models guarantee optimality when solutions are found and the development
of general purpose optimization solvers remains an active area of research.35 We consider multiple source and sink nodes;
however, after using a reduction, the problem we consider can be seen as a stack of |K| 2-terminal feasible-flow problems
(one for every system k ∈ K). Note that some components in network k ∈ K may require services provided by another
network k̄ ∈ K such that k ≠ k̄, thus coupling otherwise independent network-flow problems. As before, we consider the
ensemble G(V,E). Also, a component labeled i ∈  has capacity ui that is a discrete random variable taking values from
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the set {xi(1) < ... < xi(li)} with respective probabilities {pi(1), … , pi(li)}. Moreover, each infrastructure k ∈ K has an
associated set of commodities Lk, and each node i ∈ V has a demand bilk . When bilk > 0, we say that node i ∈ V is a cus-
tomer of commodity lk ∈ Lk. Conversely, when bilk < 0, we say that node i ∈ V is a supplier of commodity lk ∈ Lk and
a transshipment node otherwise. Certain nodes i ∈ V will require satisfying demands b′

ilk
> 0 to function properly, and

their capacity level u𝜓(i) will be factored by respective interdependent functionality wi ∈ {0, 1}. In addition to this, flow
𝑓i𝑗lk of commodity lk ∈ Lk can traverse links (i, j) ∈ Ek, k ∈ K. The feasible performance of the SOS is verified when
uk(v) ≥ Dk for all networks k ∈ K, where uk(v) is the sum of all commodity units in Lk reaching customer nodes. We will
compute uk(v) using optimization model in Equations 11a-g however, we first consider 3 reductions. First, we introduce
super source node sk, super sink node tk, and a directed link (tk, sk) with fixed unbounded capacity for all networks k ∈ K.
Note that a fictitious node or link is added to respective sets Vk or Ek, labeled in , and assumed perfectly reliable. Second,
for every customer node (with bilk > 0), we introduce a directed link from such node to tk and assume capacity bilk . We
do the same for every supplier node (with bilk < 0), but directed links go from sk to such nodes and assume nonnegative
capacity −bilk . Third, we add directed links from nodes with required demands b′

ilk
to sink tk and assume capacity b′

ilk
. We

consider that every link in E has an associated cost cij = 0 except for edges (tk, sk), which have cost −1.

Min
∑
k∈K

∑
(i,𝑗)∈Ek

∑
lk∈Lk

ci𝑗𝑓i𝑗lk (11a)

s.t.
∑

𝑗∶(i,𝑗)∈Ek

𝑓i𝑗lk −
∑

𝑗∶( 𝑗,i)∈Ek

𝑓𝑗ilk = 0, ∀i ∈ V ,∀lk ∈ Lk,∀k ∈ K (11b)

∑
lk∈Lk

𝑓i𝑗lk ≤ u𝜙(i,𝑗)wi ∀(i, 𝑗) ∈ Ek,∀k ∈ K (11c)

∑
lk∈Lk

𝑓i𝑗lk ≤ u𝜙(i,𝑗)w𝑗 ∀(i, 𝑗) ∈ Ek,∀k ∈ K (11d)

∑
k∈K

∑
𝑗∶(i,𝑗)∈Ek

∑
lk∈Lk

𝑓i𝑗lk ≤ u𝜓(i)wi ∀i ∈ V (11e)

wib′
ilk

≤ 𝑓itklk ∀lk ∈ Lk,∀k ∈ K,∀i ∈ V (11f)

𝑓i𝑗lk ≥ 0 ∀lk ∈ Lk,∀(i, 𝑗) ∈ Ek,∀k ∈ K. (11g)

Negative costs ctksk = −1 and null costs for all other flows in the objective function of Equation 11a maximize the flow
of commodities from supplier nodes to demand nodes, which in turn maximizes the utility of each network. Simplifying
vanishing terms in Equation 11a and grouping same network k terms, we recover the utility function uk(v) =

∑
lk∈Lk

𝑓tksklk .
The set of constraints in Equation 11b ensures that node inflow and outflow of commodities is in equilibrium. The set of
constraints in Equation 11c-d ensures that the amount of commodities traversing links does not exceed their capacities
while taking into account the functionality of end nodes. The set of constraints in Equation 11e takes into account node
capacity. The set of constraints Equation 11f ensures that nodes with nonsatisfied interdemands have null functionality.
Constraints in Equation 11g enforce nonnegativity of flows.

The RAILS problem with utility function computed from Equation 11a can be solved using Algorithms 1 and 2.
Unfortunately, subroutines feasible_v0(·) and infeasible_v0(·) for the 2-terminal feasible-flow problem cannot be used
when considering functional interdependency constraints. Next, we extend the SSP method to obtain maximum flows
and minimum cuts using Equations 11a-g and introduce problem-specific subroutines for deriving deeper state v0 for
Algorithms 1 and 2, but now for interdependent networks.

Maximum flows/minimum cuts for interdependent flow networks: Let us define u′
i to be the effective capacity

of component i ∈ , which is computed as the nominal capacity ui times its performance wi. In this study, a link's
effective capacity is simply u′

i = ui; however, a node's effective capacity is u′
i = ui · w𝜓−1(i) due to functionality impacted

by nonsatisfied interdemands. To understand how interdependent constraints complicate the issue of determining the
maximum flow/minimum cut, note first that for the single network k case and assuming wi = 1,∀i ∈ V, Equations 11a-d
and g maximize the flow of commodities from sk to tk.31 Also, using flows fijlk

,∀(i, j) ∈ E∀lk ∈ Lk, one can derive a
minimum cut from constructing a residual graph where each link capacity is u𝜙(i,j) −

∑
lk ∈ Lkfijlk

and in which null
residual capacity links are removed. Then a breadth-first-search or depth-first-search algorithm is used to traverse the
graph Gk(Vk,Ek) from node sk to derive a set of visited nodes Sk ∈ Vk and nonvisited nodes Tk = Vk ⧵ Sk.30 Also, node
capacity and functionality can be handled using the graph transformation depicted in Figure 3, and inflow or outflow can
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FIGURE 3 (Left) Generic node i ∈ V with arbitrary number of in- and out-links. (Right) Graph transformation on node i to consider
capacity u𝜓(i) and functionality wi

be subtracted from the fictitious link's capacity to obtain residual capacity. Let us call Ck(v) ∈  the minimum cut set,
ie, the components with end nodes belonging to subsets Sk and Tk. We will refer to the previous process for deriving an
s-t minimum cut in graph Gk as mincut(Gk, sk, tk, f,u,w). Also, let us define Wk(v) to be the sum of component capacity
levels ui for all components in Ck(v). Similarly, let us define iWk(v) to be the sum of component effective capacities u′

i for
all components in Ck(v). For a single-independent network k, it holds that uk(v) = iWk(v) = Wk(v) from the maximum
flow/minimum cut theorem. However, when many networks are considered and some interdependent demands b′

ilk
are

nonzero, then it holds that uk(v) = iWk(v) ≤ Wk(v). In other words, interdependent demands that cannot be met can
induce a smaller maximum flow (minimum cut) by reducing a node's effective capacity with respect to its nominal one. In
the SOS setting, we let C(v) be the ensemble of minimum cut sets Ck(v) for all networks k ∈ K. Whenever iWk(v) < Wk(v),
we call Ck(v) an interdependency induced cut (IIC), and we call any component with lesser capacity than its nominal due
to unsatisfied demands a cascade failing component (CFC).

In the classic case, a minimum s-t cut set can be seen as a subset of links limiting the maximum flow between nodes s
and t. In addition to Ck(v), in the case of an IIC, we will need to compute a complementary cut, denoted C′

k(v), which is a
set of components limiting the capacity of CFCs in Ck(v). Due to dynamics of interdependent networks, C′

k(v) may contain
components belonging to network k and/or other networks in K. Algorithm 3 shows how to determine complementary
cuts C′

k(v)∀k ∈ K, where C(v) contains |K| minimum cut sets Ck(v).

Deriving deeper feasible and infeasible states v0: F-SSP algorithms derive a deeper feasible state v0 by decreasing
capacity levels of components not in C(v) while leaving enough capacity to allow flows obtained from optimization (ie,
Equations 11a-g) in addition, they decrease capacity levels of components in C(v) while ensuring that the sum of new
capacities of components in C(v) remains at Dk or above for all k ∈ K such that the resulting v0 is also feasible. However,
for interdependent networks, reducing the capacity level of one component in Ck(v) can cause an IIC in another network
k̄ causing it to be infeasible or induce a cascade of IICs across the SOS that could result into iWk(v0) < Dk for some k ∈ K.
Thus, when reducing capacity levels within Ck(v) and C′

k(v) for all k ∈ K, we need to rerun the optimization algorithm
for each component capacity decrement one-by-one to ensure that v0 remains feasible; otherwise, we step back and move
on with the next component.
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The derivation of a deeper infeasible state for a single network k serves us to understand the base case and increased
complexity of interdependent systems. In the single network case, this consists of finding a minimum cut set Ck(v) at state
v. Moreover, components' capacity levels outside the cut (i ∉ Ck(v)) are increased to 𝛽 i, whereas capacity levels of com-
ponents in Ck(v) are increased with the sum of their capacities remaining below performance threshold Dk. This ensures
that the resulting v0 is also infeasible. However, in the interdependent case, keeping the sum of nominal or effective capac-
ity levels of elements in Ck(v) below Dk is not enough, since one or more IICs can be due to one or more components
in another network's minimum cut Ck̄(v). Thus, after obtaining C′

k(v),∀k ∈ K, we increase the capacity levels of compo-
nents outside C(v) and outside C′(v) all the way towards 𝛽 and increase the capacity levels of components in C(v) and C′(v)
one-by-one testing for feasibility of the resulting v0 such that if it becomes feasible, we step back and move on to the next
component.

Likelihood-based (LB) deeper state derivation: In the context of s-t network reliability and F-SSP algorithms, the
work by Lim et al24 introduced the most reliable path to derive a deeper point v0 that results into feasible subset [v0, 𝛽]
that has a larger contribution to shrinking bounds in Equation 7 with respect to classic shortest path.17 Let path ⊆  be
a set of components traversed in a path sequence from node s to t. Also, conditioned on state v in subset Ui′−1 = [𝛼, 𝛽],
component reliabilities are ri = pi(vi)∕

∑𝛽i
𝑗=𝛼i

pi( 𝑗). Moreover, the likelihood L(path) of a generic path is simply the product
of component reliabilities in path, ie, L(path) =

∏
i∈ path ri. Lim et al24 proposed a modified Dijkstra algorithm that

computes the path with maximum likelihood. However, since L(path) is a nonlinear function of component probabilities,
we can use the negative log-likelihood (NLL) function and obtain a simpler expression NLL(path) =

∑
i∈path−log(ri). Note

that minimizing NLL(·) is equivalent to maximizing L(·). Moreover, a path obtained using classical Dijkstra's algorithm
with link weights cij = −log(rij) − log(rj) minimizes NLL(v) while accounting for both link and node reliabilities rij
and rj, respectively. We extend this strategy to our RAILS problem by considering costs cij as described in Equation 11a.
However, to ensure that utilities uk(v) =

∑
lk∈Lk

𝑓tksklk are maximized, we consider that fictitious link (tk, sk) has weight
ctksk = −(1 + cmax) · a, where cmax is the maximum link cost cij as defined above among all links in (i, j) ∈ E and a = ||.

The flows f obtained from Equations 11a-g are used directly by subroutine feasible_v0(·) to derive most reliable paths
or flows. However, for its counterpart infeasible_v0(·), we will need to do more work for deriving minimum cuts with
maximum likelihood. In particular, we exploit the fact that the minimum cut is a subset of saturated links when comput-
ing maximum s-t flow, and we obtain a maximum likelihood minimum cut with a 2-level minimum s-t cut algorithm.
First, the maximum s-t flow is computed to obtain flows f (eg, using Equations 11a-g), and a residual graph is constructed
where each link has capacity u𝜙(i,j) −

∑
lk∈Lk

fijlk
. Then we consider a secondary maximum s-t flow problem where every

saturated link (residual capacity zero) has capacity cij =u𝜙(i,j) and nonsaturated links have unbounded capacity and com-
pute the minimum cut Ck(v) as described before with routine mincut(Gk, sk, tk, f,u,w). Finally, C(v) is the minimum cut
with maximum likelihood. We will adopt these LB strategies in our numerical experiments and show how they affect
convergence of bounds in Equation 7.

3.5 RAILS modeling capabilities and connection with risk
The multicommodity network flow problem with interdependency constraints in Equations 11a-g can be used for mod-
eling a variety of practical problems. Before we describe such applications, we recall that the ensemble of systems G(V,E)
has set of nodes V =

⋃
k∈KVk and set of links E =

⋃
k∈KEk, and each network system has associated set of commodities

Lk. Note that these sets do not need to be disjoint for extra lifeline modelers' advantage.
Just as fictitious network components are added to model more complicated problems (eg, super source node for multi-

ple generation nodes), we can consider fictitious networks to model backup systems supporting the operation of networks.
In particular, a network k ∈ K with interdependent demands bilk̄

such that lk̄ ∈ Lk̄, i ∈ (Vk ∩ Vk̄), and k, k̄ ∈ K, can
be provided with a backup system modeled by a network Gk̃(Vk̃,Ek̃) with null performance threshold (Dk̃ = 0) since its
only function is to support other components in k ∈ K such that k̃ ≠ k. Vk̃ will contain as many supply nodes as backup
generation facilities and Ek̃ will contain directed links from backup generation to consumers as provided in the backup
design. Note that even though commodities Lk̄ are associated to infrastructure k̄, there is no restriction in our formula-
tion preventing Lk̄ ∩ Lk̃ ≠ ∅, eg, a backup power network has commodities that also appear in the main power network
and both can power the same node. This simple yet powerful abstraction allows for modeling unreliable backups, their
shared use among components, and optimal allocation of resources.

Cyber and logical interdependencies can also be modeled using the fictitious network approach. For instance, a set of
nodes p ∈ V may require that other nodes in q ∈ V are functional for them to be functional; this is easily handled by
adding a fictitious network Gk̃(Vk̃,Ek̃) with Vk̃ = p ∪ q, fictitious set of commodities Lk̃ = {lk̃}, and where nodes in q are



14 PAREDES ET AL.

suppliers and nodes in p are customers. Fictitious-directed links are added to Ek̃ connecting each supplier to each customer
and demand intensities, while link capacities can be selected homogeneously or heterogeneously to model AND, OR, and
XOR and more general interdependencies.

Reliability estimation can be seen as a specific case of risk estimation where a feasibility threshold is established (ie,
Dk), and there are associated losses for being below or not a performance level. Nevertheless, one could extend the reli-
ability assessment to a risk assessment context by considering multiple thresholds Dk separately and use the combined
by-products to build performance annual exceedance probability curves that can be easily linked to associated losses. We
take this approach for risk estimation in our numerical experiments.

While the core of this contribution is to provide an alternative methodology to dealing with multiple FMPs by exploiting
network structure, as opposed to reducing the set of FMPs as in past research, we also want to highlight the applicabil-
ity of RAILS as a stand-alone analytical framework for studying networked engineering systems under multiple hazards
providing sound theoretical bounds on reliability and risk estimates. In addition to this, RAILS by-products can be used
to compare retrofit strategies and backup provisions, as well as to rank components via reliability-based importance
metrics.19

4 COMPUTATIONAL EXPERIMENTS

We begin this section by showing how different SSP strategies impact convergence of bounds in Equation 7 as well as the
size of U in the simpler setting of a single infrastructure and s-t network reliability. Then we test new SSP algorithms for the
RAILS problem considered in this paper, namely, 2-terminal feasible flows with interdependency constraints. We round
up this section with an application of RAILS to seismic performance loss, using realistic systems artificially positioned in
the San Francisco Bay Region (SFBR).

We implement SSP Algorithms 1 and 2 in a Python prototype and use Gurobi36 for solving Equation 11a–g.

4.1 Comparison of SSP algorithms and impact on convergence of bounds and |U|
We first consider the network in Figure 4 (left) with unreliable nodes that can fail with probability 10%.  is consistent
with the labeling shown. The exact s-t network reliability is 0.787052 and can be computed using any SSP algorithm in
Table 1. Figure 4 (center) shows how bounds converge as F-SSP algorithms run considering different policies for handling
U. We see that Heap handling of U prevails over other strategies when aiming at tight bounds. Also, using LB further
tightens bounds as depicted by Heap with and without considering LB. Figure 4 (right) shows a comparison among A1
and A2 from Table 1. As expected, the upper bound converges faster when using A1 and the lower bound converges faster
when using A2. Algorithm A6 in the same figure does not feature bounds that converge nearly as fast as for A1 or A2;
however, it does perform better than its F-SSP counterpart A5 in Figure 4 (center).

Figure 5 compares algorithms in Table 1 as measured by their precision and memory consumption, ie, PU at termination
and maximum value of |U| during execution. We run each algorithm for 1,000 iterations as the bounds tighten enough
by then in the experiments to unravel algorithmic differences. We also vary the size parameter of the grids (N) to show its
effect on the performance of algorithms. Figure 5 (left) shows the final size as well the location of the gap PU containing

FIGURE 4 5 × 5 Grid network (left), comparison among feasible-based state-space partition (F-SSP) algorithms (center), and comparison
between F-SSP and infeasible-based state-space partition (I-SSP) [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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TABLE 1 List of SSP configurations explored in Section 4.1

Algorithm Configuration References Algorithm Configuration References

A1 I-SSP + Heap + LB This paper A4 F-SSP + LIFO This paper and Alexopoulos20

A2 F-SSP + Heap + LB This paper and Lim and Song24 A5 F-SSP + Recursion Li and He17

A3 F-SSP + Heap This paper and Alexopoulos20 A6 I-SSP + Recursion Liu et al18

Abbreviations: F-SSP, feasible-based state-space partition; I-SSP, infeasible-based state-space partition; LB, likelihood-based; LIFO, last-in-first-out; SSP,
state-space partition.

FIGURE 5 Final values of PU (left) and maximum values of |U| (right), when running various algorithms on grid networks of size N × N.
Each algorithm ran 1,000 iterations [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Left: 5 × 5 grid with extreme topologies GT (thin line) and MST (thick line). Best values of PU (center) and maximum values of
|U| (right), while varying parameter N. Each algorithm ran 1,000 iterations [Colour figure can be viewed at wileyonlinelibrary.com]

network reliability estimates for all SSP algorithms and sizes N × N. It is clear that algorithms with Heap handling of U
achieve smaller gaps, particularly when using LB. Algorithm A2 provides the smallest gap, while the best upper and lower
bounds are consistently given by A1 and A2, respectively. Figure 5 (right) turns the attention into memory consumption
measured as the maximum number of stored subproblems at any time during algorithm execution. We observe that Heap
algorithms have the largest memory consumption, revealing a memory/precision trade-off. Furthermore, consistent with
previous findings, the LIFO strategy seems to be the most memory efficient way to handle U.

Figure 6 further explores the effect of topology. We consider the minimum spanning tree (MST) and greedy triangulation
(GT) as extreme models of sparse and redundant planar networks, respectively (Figure 6 [left]). This time, we obtain the
gap PU (see Figure 6 [center]) from our best upper and best lower bound estimates, which are consistently provided by
A1 and A2, respectively. The maximum value of |U| is in turn the maximum among such values encountered in A1 and
A2 (Figure 6 [right]). Also, we see that the MST networks are solved exactly (Figure 6 [center]).

4.2 Interdependent grid networks
To further test the efficiency of SSP algorithms, we consider a model of synthetic interdependent networks with grid
topology. Also, we will consider various performance threshold levels Dk and different scenarios of interconnectivity. We
consider that links and nodes can fail. For ease of interpretation, we will adopt 2 capacity levels for components, namely,

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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the cases of complete damage and no damage. Since we will need capacitated and interconnected systems with node
demands, we will use the following network model. First, define the number of infrastructures k ∈ K as well as their
size N × N. Note that with this model, there are |K|(N2 + 2(N − 1)N) components. Then simulate node demands for
each infrastructure k ∈ K identifying them as customers, suppliers, etc. Also, for each infrastructure k ∈ K, we select at
random a percentage Istr of nodes and assign interdemands b′

ilk′
such that k ≠ k′ and connect them to major consumer

nodes j that are selected at random from infrastructure k′ by adding a directed interdependent link (j, i) to Ek′ with enough
capacity to transport b′

i,lk′
. We selected 30% as the proportion of consumer and supplier nodes for each grid k ∈ K. Also,

the intensity of all intrademands and supplies are set to 1, maximum capacity level of links is set to 1 with probability
90%, and for nodes, we adopt unbounded capacity with probability 95%. When components fail, their capacity levels
are assumed to be 0. Figure 7 shows a realization of the model described above, in which we have incrementally added
interdemands (b′

ilk′
= 0.001) and cross-system links as Istr increases. Each experiment consists of running 1 of the 2 SSP

algorithms (A1 and A2 in RAILS context) on realizations of the model while using the same magnitude of performance
threshold Dk for each infrastructure k ∈ K and a fixed value for Istr. We set as limit of computation 1,000 seconds.

As the size of the grids increase, we note that bounds do not converge to a meaningful precision; thus, we focus our
attention to variance reduction when adopting an ISS approach on remaining subproblems in U.12 Variance reduction of a
target estimator is measured as variance of a reference estimator (eg, crude MCS) over the variance of a target estimator.37

Figure 8 shows how many orders of magnitude more efficient in terms of variance reduction are SSP-derived estimators
with respect to MCS. The upper bound on R from I-SSP tends to induce more variance reduction than F-SSP–based
estimators. Figure 9 shows systemic reliability estimates and their variability as a function of Dk and Istr, as well as the
variance ratio of F-SSP and I-SSP as reference and target estimators, respectively. Moreover, we observe that F-SSP tends
to be better than I-SSP when the performance threshold is close to the maximum performance level of small systems;
nonetheless, as the size of the systems increases, the variance ratio favors I-SSP overall.

FIGURE 7 Realization of 2-layer 8 × 8 grids with interdependency degrees Istr of 10%, 20%, and 50% [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 8 Variance ratio for crude Monte Carlo simulation estimator and importance and stratified sampling estimator. log10(VMCS∕VISS)
represents how much more efficient is an importance and stratified sampling estimator with respect to Monte Carlo simulation. Top plots are
obtained using infeasible-based state-space partition and bottom plots using feasible-based state-space partition [Colour figure can be viewed
at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 9 Systemic reliability R estimates for 8 × 8 grids using feasible-based state-space partition (F-SSP) algorithm for different Dk and
Istr (Left). Other plots show the ratio of estimator variances using F-SSP and infeasible-based state-space partition with color clipped between
0 and 2. VF − ISS∕VI − ISS > 1 means that infeasible-based state-space partition induces more variance reduction than F-SSP [Colour figure can
be viewed at wileyonlinelibrary.com]

FIGURE 10 Left: topology and relative position of networks artificially positioned in the San Francisco Bay Region. Center: Annual failure
rate associated to earthquake scenarios with same magnitude for f = 1. Right: Annual exceedance performance loss for the entire seismic
catalog considering different performance loss levels (1 − f). ISS, importance and stratified sampling [Colour figure can be viewed at
wileyonlinelibrary.com]

TABLE 2 Component fragility functions. Φ(·) is the cumulative distribution function
of a random variate with standard normal distribution

Component Type IDs Fragility Function Notes

Power generation 1-8, 60 Φ
( log(PGA∕median)

𝛽

)
median = 0.52; 𝛽 = 0.55

Power distribution 9-59 Φ
( log(PGA∕median)

𝛽

)
median = 0.45; 𝛽 = 0.45

Water generation 1-15 Φ
( log(PGA∕median)

𝛽

)
median = 0.77; 𝛽 = 0.65

Water distribution 16-49 Φ
( log(PGA∕median)

𝛽

)
median = 0.68; 𝛽 = 0.55

Water network links All 2 × 10−5 · PGV2.25 Units in rate of failures per km

4.3 Case study: risk of interdependent networks artificially positioned in the SFBR
To showcase an application of the RAILS framework for computing risk of interdependent LSs, we use a dataset of interde-
pendent networks artificially located in the SFBR. Here, seismic activity from nearby faults can exert damage to network
components, and there is uncertainty in the source of the ground motion as well as in the intensity of the quake.

The dataset of interdependent networks consists of a power subtransmission system and a potable water distribution
network (Figure 10). The test systems represent simplified yet realistic networks serving Shelby County, TN, USA.38 The
power network has 60 nodes and 121 links, while the water network has 49 nodes and 71 links. The description of the
topologies and general properties of the interdependent networks is based on the work by Duenas-Osorio et al.39 Since
the objective of this analysis is to showcase the application of our framework in seismic analyses, we consider component
fragilities as depicted in Table 2.40 Also, demand and capacity data as well as interdependencies were adopted from a study
that uses the same dataset.41

To obtain ground motions' mean and residuals (Equation 1), we use the OpenSHA Event Set Calculator.42 This soft-
ware outputs parameters for input locations using specified seismic source model, prediction equations, and intensity
measures. We used the UCERF2 as seismic source model,43 Boore and Atkinson's prediction equations,44 and PGA and

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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PGV* for target parameters as required input for fragility functions. The selected source model treats faults as discretized
ruptures with associated magnitudes and annual occurrence rates. We only consider seismic events with annual rates
𝜈 ≥ 10−5 as done in a similar study.4 For each seismic event, we consider 100 realizations, which totals 99,400 IMPs for
computing systemic performance. Considering that we do not reduce the seismic catalog, this final size is considerably
larger than those in previous work (eg, 4,220 IMPs reduced to 200 4).

To establish feasibility in this case study, we let the performance threshold Dk be the sum of all demands in infrastruc-
ture k ∈ K = {Power,Water}. To quantify risk, we consider a factor f ∈ [0, 1] to be multiplied by Dk to account for
various performance levels. For this case study, we conduct an experiment for f taking values from 0.1 to 1.0 with 0.1 size
increments. Also, we separately consider F-SSP and I-SSP estimators. For each estimator, we compute 1,000 iterations or
less within 1,000 seconds to obtain F, I, and U. Then, from U, we draw 10,000 samples v, each with probability 𝜔′

v and
store outcomes SF(v). In this precomputation step, we considered failure probabilities of 5% for network links and 1% for
all nodes. Finally, for each IMPij, associated to ESi as defined in Section 2, we update bounds PF and PI to respective fail-
ure probabilities, and each precomputed sample outcome is updated as 𝜔i𝑗(PF + PU · SF(v)𝜔′

i𝑗,v∕𝜔
′
v), where weight 𝜔ij is

as defined in Section 2 and IS factor 𝜔′
i𝑗,v∕𝜔

′
v corrects for the probability of occurrence of sample v in the probability space

defined by fragilities associated to IMPij.
Figure 10 (center) shows the annualized failure rate of the SOS conditioned on the occurrence of specific magni-

tude earthquakes in the catalog. Pr[M] stands for the aggregated annual rates of IMPs with same magnitude. Obviously,
high-magnitude events have smaller combined annual rate. Furthermore, lower and upper bounds on Pr[(SF(v) = 0)∩M]
quantify the annualized SOS failure probability for earthquakes of magnitude M in the catalog. These bounds are almost
indistinguishable in most regions of the plot, and they refer to performance factor f = 1, ie, the SOS is in a feasible state
when all demands can be met. Also, note the high contribution to the SOS failure probability by ESs with magnitudes
between 6.5 and 7.5, which is expected due to both their large combined annual rates of occurrence and their capacity
damage at the SOS level.

Figure 10 (right) shows the annualized exceedance performance loss for the SOS when considering different perfor-
mance loss levels 1 − f and the combined effect of the whole seismic catalog. If a loss function L is known, then the
horizontal axis is simply transformed by L(1 − f), and Figure 10 (right) becomes an exceedance loss curve for monetary
costs. Our risk assessment provides insight on the overall annual exceedance loss of the SOS via theoretical bounds, while
a more refined analysis can be performed by increasing the number of samples and number of SSP algorithm iterations,
or by segmenting the seismic catalog into separate subsets of FMPs using similarity measures and developing respective
estimators in parallel. The estimate based on ISS is very close to the lower bound on the failure probability, suggesting
that few subsets in I will provide an upper bound close to the true value and upper bound results will tend to be rather
conservative. We have noticed a similar trend when it comes to approximating unreliability (associated to lower bound)
and reliability (associated to upper bound), where efficient fully polynomial randomized approximation schemes based
on a few infeasible subsets exists for the former but not for the latter.45

5 CONCLUSIONS

In this paper, we proposed efficient analytical state-space partition (SSP) algorithms for estimating the systemic reliability
of networked systems with cyclic interdependencies. Computations can be recycled and used in Monte Carlo sampling
with considerable variance reduction over crude Monte Carlo methods.

We introduced a new framework for general interdependent network reliability problems for systemic performance
assessment termed RAILS. Such a framework is presented using a mathematical programming problem formulation and
new SSP-based algorithms for their efficient solution. Moreover, while the RAILS framework serves as a generalization
of network flow–based reliability problems in the system of systems (SOS) setting, this can be used in simpler problems
(eg, all-terminal and source-terminal connectivity), and the independent network case. We provided improved algorithms
that integrate likelihood-based decompositions in the two main strategies proposed, feasible- and infeasible-based, and
gave a systematic treatment of their implementation, while revealing their relation to existing methods.

Numerical experiments show that RAILS can be used to derive exact estimates or tight bounds for relatively small
networks more efficiently (using Heap and LB strategies) than existing decomposition methods. Also, for larger systems,
using partial decomposition and Monte Carlo sampling, RAILS exhibits improved performance over crude sampling. In

*Peak ground acceleration (PGA) and peak ground velocity (PGV).
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addition, we exemplified the estimation of risk in realistic interdependent networks while using seismic catalogs of size
considerably larger than those in the literature.

Further research will focus on improving the SSP algorithms and address the lack of knowledge on a priori guaran-
tees of approximation as done in more recent work.46 While we introduced problem-specific routines feasible_v0(·) and
infeasible_v0(·) for network flow problems with interdependency constraints, developing routines that are completely
structure agnostic would result in a direct extension of RAILS to problems beyond those in the form of Equations 11a–g.
Moreover, adding physical properties, correlations and repairs would augment the applications of RAILS. Finally, an
in-depth study of importance metrics that can be derived using SSP algorithms would provide new perspectives on
element ranking for protection and retrofitting of interdependent systems.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the support by the U.S. Department of Defense (grant W911NF-13-1-0340) and the
U.S. National Science Foundation (grants CMMI-1436845 and CMMI-1541033).

ORCID

Roger Paredes http://orcid.org/0000-0003-3683-2186

REFERENCES
1. Han Y, Davidson RA. Probabilistic seismic hazard analysis for spatially distributed infrastructure. Earthq Eng Struct Dyn.

2012;41(11):2141-2158.
2. Jayaram N, Baker JW. Efficient sampling and data reduction techniques for probabilistic seismic lifeline risk assessment. Earthq Eng Struct

Dyn. 2010;41(11):1109-1131.
3. Stergiou E, Kiremidjian AS. Treatment of uncertainties in seismic-risk analysis of transportation systems. Pacific Earthquake Engineering

Research Center; 2008.
4. Miller M, Baker J. Ground-motion intensity and damage map selection for probabilistic infrastructure network risk assessment using

optimization. Earthq Eng Struct Dyn. 2015;44(7):1139-1156.
5. Manzour H, Davidson RA, Horspool N, Nozick LK. Seismic hazard loss analysis for spatially distributed infrastructure in Christchurch

New Zealand. Earthq Spectra. 2016;32(2):697-712.
6. Kim Y, Kang WH, Song J. Assessment of seismic risk and importance measures of interdependent networks using a non simulation-based

method. J Earthq Eng. 2012;16(6):777-794.
7. Bruneau M, Chang SE, Eguchi RT, et al. A framework to quantitatively assess and enhance the seismic resilience of communities. Earthq

Spectra. 2003;19(4):733-752.
8. Ouyang M, Dueñas-Osorio L. Time-dependent resilience assessment improvement of urban infrastructure systems. Chaos (Woodbury,

N.Y.) 2012;22(3):033 122.
9. Liu W, Li J. An improved recursive decomposition algorithm for reliability evaluation of lifeline networks. Earthq Eng Eng Vib.

2009;8(3):409-419.
10. Dueñas-Osorio L, Rojo J. Reliability assessment of lifeline systems with radial topology. Comput Aided Civ Inf Eng. 2011;26(2):111-128.
11. Stern R, Song J, Work D. Accelerated Monte Carlo system reliability analysis through machine-learning-based surrogate models of network

connectivity. Reliab Eng Syst Saf . 2017;164(2016):1-9.
12. Daly MS, Alexopoulos C. State-space partition techniques for multiterminal flows in stochastic networks. Networks. 2006;48(2):90-111.
13. Doulliez P, Jamoulle E. Transportation networks with random arc capacities. Revue française d'automatique, d'informatique et de

recherche opérationnelle (Rairo); 1972.
14. Alexopoulos C. A note on state-space decomposition methods for analyzing stochastic flow networks. 1995;44(2):354-357.
15. Jacobson JA. State space partitioning methods for solving a class of stochastic network problems. PhD Thesis. Atlanta, GA: Georgia Institute

of Technology; 1993. http://hdl.handle.net/1853/25637
16. Dotson W, Gobien J. A new analysis technique for probabilistic graphs. IEEE Trans Circuits Syst. 1979;26(10):855-865.
17. Li J, He J. A recursive decomposition algorithm for network seismic reliability evaluation. Earthq Eng Struct Dyn. 2002;31(8):1525-1539.
18. Liu W, Qian Y, Li J. Minimal cut-based recursive decomposition algorithm for seismic reliability evaluation of lifeline networks. J Earthq

Eng Eng Vib. 2007;6(1):21-28.
19. Ghosn M, Dueñas-Osorio L, Frangopol D, et al. Performance indicators for structural systems and infrastructure networks. J Struct Eng.

2016;142(Technical Papers):1-18.
20. Alexopoulos C. State space partitioning methods for stochastic shortest path problems. Networks. 1997;30(1):9-21.
21. Daly MS. State space partition techniques for multiterminal and multicommodity flows in stochastic networks. PhD Thesis. Atlanta, GA:

Georgia Institute of Technology; 2001. http://hdl.handle.net/1853/25637
22. Barlow RE, Wu AS. Coherent systems with multi-state components. Math Oper Res. 1978;3(4):275-281.

http://orcid.org/0000-0003-3683-2186
http://orcid.org/0000-0003-3683-2186
http://hdl.handle.net/1853/25637
http://hdl.handle.net/1853/25637


20 PAREDES ET AL.

23. Bai G. Efficient Evaluation of Multistate Network Reliability. PhD Thesis. Edmonton Alberta, Canada: University of Alberta; 2016. https://
doi.org/10.7939/R3KH0F69Q

24. Lim HW, Song J. Efficient risk assessment of lifeline networks under spatially correlated ground motions using selective recursive
decomposition algorithm. Earthq Eng Struct Dyn. 2012;41(13):1861-1882.

25. Valiant LG. The complexity of enumeration and reliability problems. SIAM J Comput. 1979;8(3):410-421.
26. Yoo YB, Deo N. A comparison of algorithms for terminal-pair reliability. IEEE Trans Reliab. 1988;37(2):210-215.
27. Frank H, Hakimi S. Probabilistic flows through a communication network. IEEE Trans Circuit Theory. 1965;12(3):413-414.
28. Evans JR. Maximum flow in probabilistic graphs—the discrete case. Networks. 1976;6(2):161-183.
29. Zhao P, Zhang X. A survey on reliability evaluation of stochastic-flow networks in terms of minimal paths. In: 2009 International

Conference on Information Engineering and Computer Science. Wuhan, China: IEEE; 2009;1-4. https://doi.org/10.1109/ICIECS.2009.
5365424

30. Esfahanian AH. Connectivity Algorithms. In: Beineke LW, Wilson RJ, eds. Topics in structural graph theory, Ch 12. New York: Cambridge
University Press; 2013:268-281.

31. Ahuja RK, Magnanti TL, Orlin JB. Network flows: Theory, Algorithms and Applications. Los Angeles, California, United States: Prentice
Hall; 1993.

32. Lee II EE, Mitchell JE, Wallace WA. Restoration of services in interdependent infrastructure systems: a network flows approach. IEEE
Trans Syst Man Cybern Part C Appl Rev. 2007;37(6):1303-1317.

33. González AD, Dueñas-Osorio L, Sánchez-Silva M, Medaglia AL. The interdependent network design problem for optimal infrastructure
system restoration. Comput Aided Civ Inf Eng. 2016;31(5):334-350.

34. Paredes R, Duenas-Osorio L. A time-dependent seismic resilience analysis approach for networked lifelines. In: Proceedings of ICASP12
12th International Conference on Applications of Statistics and Probability in Civil Engineering held in Vancouver; 2015; Vancouver,
Canada. 1-8.

35. Vielma JP. Mixed integer linear programming formulation techniques. SIAM Rev. 2015;57(1):3-57.
36. Gurobi Optimization I. Gurobi optimizer reference manual; 2016.
37. Fishman GS. A Monte Carlo sampling plan for estimating network reliability. Oper Res. 1986;34(4):581-594.
38. Hernandez-Fajardo I, Dueñas-Osorio L. Probabilistic study of cascading failures in complex interdependent lifeline systems. Reliab Eng

Syst Saf . 2013;111:260-272.
39. Dueñas-Osorio L, Craig JI, Goodno BJ. Seismic response of critical interdependent networks. Earthq Eng Struct Dyn. 2007;36(2):285-306.
40. HAZUS. Multi-hazard loss estimation methodology, earthquake model, HAZUS-MH MR4 technical manual. Technical Report.

Washington, D.C.; 2003.
41. González AD, Sánchez-Silva M, Dueñas-Osorio L, Medaglia AL. Mitigation strategies for lifeline systems based on the interdependent net-

work design problem. In: International Conference on Vulnerability and Risk Analysis and Management (ICVRAM). Liverpool, England:
American Society of Civil Engineers; 2014:1-10.

42. Field EH, Jordan TH, Cornell CA. OpenSHA: a developing community-modeling environment for seismic hazard analysis. Seismol Res
Lett. 2003;74(4):406-419.

43. Field EH, Dawson TE, Felzer KR, et al. Uniform california earthquake rupture forecast, version 2 (UCERF 2). Bull Seismol Soc Am.
2009;99(4):2053-2107.

44. Boore DM, Atkinson GM. Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5PSA at spectral
periods between 0.01 s and 10.0 s. Earthq Spectra. 2008;24(1):99-138.

45. Karger DR. A Fast and simple unbiased estimator for network (un)reliability. In: 2016 IEEE 57th Annual Symposium on Foundations of
Computer Science (FOCS); 2016; New Brunswick, NJ. 635-644. https://doi.org/10.1109/FOCS.2016.96

46. Duenas-Osorio L, Meel KS, Paredes R, Vardi MY. Counting-based reliability estimation for power-transmission grids. In: Proceedings of
AAAI Conference on Artificial Intelligence; 2017; San Francisco. 4488-4494.

How to cite this article: Paredes R, Dueñas-Osorio L, Hernandez-Fajardo I. Decomposition algorithms for sys-
tem reliability estimation with applications to interdependent lifeline networks. Earthquake Engng Struct Dyn.
2018;1–20. https://doi.org/10.1002/eqe.3071

https://doi.org/10.7939/R3KH0F69Q
https://doi.org/10.7939/R3KH0F69Q
https://doi.org/10.1109/ICIECS.2009.5365424
https://doi.org/10.1109/ICIECS.2009.5365424
https://doi.org/10.1109/FOCS.2016.96
https://doi.org/10.1002/eqe.3071

	Decomposition algorithms for system reliability estimation with applications to interdependent lifeline networks
	Abstract
	INTRODUCTION
	Seismic risk assessment of lifelines
	Reliability assessment of interdependent lifeline systems

	SEISMIC RISK ASSESSMENT
	RELIABILITY ASSESSMENT OF INTERDEPENDENT LIFELINE SYSTEMS
	Network reliability
	The SSP method
	Notable network reliability problems
	RAILS: a new framework for interdependent network reliability problems
	RAILS modeling capabilities and connection with risk

	COMPUTATIONAL EXPERIMENTS
	Comparison of SSP algorithms and impact on convergence of bounds and  |U|
	Interdependent grid networks
	Case study: risk of interdependent networks artificially positioned in the SFBR

	CONCLUSIONS
	References


