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Abstract: Lifeline Systems (LSs) are the physical and cybernetic distributed net-
works that underpin modern societies. They include: power grids, transportation
networks, cybersecurity networks, and finance networks, among others. As urban
populations continue to develop, LSs need to expand in capacity and coverage to
sustain ever increasing loads. Ensuring a reliable and steady supply of commodi-
ties and services from LSs is among governments’ and all other stakeholders’
best interests. However, assessing the reliability of LSs and finding cost-effective
strategies to improve their resilience remain standing challenges due to the com-
putational hardness of methods for evaluating interconnected LSs. This paper
proposes a new reliability estimation method inspired by previous work on set
theoretic methods for estimating network reliability. Moreover, we augment the
application of existent importance measures to uncover cascading failure vulner-
abilities across and among LSs, which are deemed practical to inform resource
allocation and LS asset management.

1 Introduction
The reliability and performance assessment of lifeline systems (LSs) continues to be an ac-
tive area of research and a crucial aspect to consider in frameworks and methodologies for
the study of resilience of LSs [5, 19]. However, whenever complexity arises from the scale
of systems or inclusion of more constraints, such as system demands and capacities, the pos-
sibilities for practitioners and researchers narrow to simulation methods for performance as-
sessment. One of the main limitations of simulation methods is the difficulty of determining
the precision of estimations, or that in order to do so, one requires to conduct large compu-
tational experiments [10]. Furthermore, machine learning algorithms remain problem-specific
as well as site-specific. To overcome these limitations, alternatives emerge from a combination
of analytical and sampling methods that either estimate exactly, within theoretical bounds, or
within confidence intervals the reliability of infrastructure systems. An emerging approach for
computing reliability of LSs is based on the state-space-partition (SSP) method [15, 3], proven
computationally efficient for network reliability problems. Such techniques partition the space
of possible states for a given system into subsets of feasible and infeasible states. For exam-
ple, link-sets (feasible) and cut-sets (infeasible) in connectivity problems. This approach was
first developed for multi-state systems by Doulliez and Jamoulle [9] in the context of feasible
flow problems. Later on, Alexopoulos found mistakes and corrected them [2], and it was further
applied for stochastic spanning trees and multi-terminal flow problems [15, 7]. Furthermore,
considering that flow problems can be reduced to path problems, the decomposition principles
in the work by Dotson [8] is a special case of multi-states systems when they are reduced to
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the binary case. We make this observation given that the work by Dotson is the basis for effi-
cient methods that were more recently developed in the reliability and earthquake engineering
community (e.g. [17]). In addition to this, the fist attempt to study interdependent LSs using
non-simulation methods was conducted by Kim, Kang and Song [16] in which they studied
dependencies of water nodes on the power system using graph transformations such as super
nodes and connecting the power and water networks in series. However, the previous work does
not consider the bidirectional case of interdependencies among LSs, which is more challenging
and is essential to shed light on the vulnerability of interdependent LSs. This paper presents
a new method for reliability assessment of interdependent lifelines systems that fully supports
interdependencies among systems. The core of our contribution consists of developing a state-
space-partition SSP technique for systemic Reliability Assessment of Interdependent Lifeline
Systems (RAILS) problems. The outputs of this method not only provide reliability estimates,
but also reveal cascading failure vulnerabilities via importance measures for LSs’ components.
The reminder of this paper is structured as follows. Section 2 describes the new method for the
estimation of systemic reliability of interdependent LSs as well as the extension of importance
measures to the system-of-systems case. Section 3 shows computational experiments for a set of
synthetic networks studied using RAILS. Finally, Section 4 offers conclusions from this study
and outlines future research directions.

2 Reliability Assessment of Interdependent Lifeline Systems
This section begins by introducing the network reliability problem and its generalization to the
system-of-systems case. Later on, we introduce a new SSP method and it’s application to the
feasible flow of interconnected systems. At the end of this section we will show extensions of
importance measures in the literature to the systemic network reliability case.

2.1 Network Reliability
Assume that an infrastructure network k can be modeled as graph Gk(Vk,Ek), where Vk is the
set of nodes and Ek is the set of links such that |Vk|= nk, |Ek|= mk. In practice, links and nodes
represent physical assets such as transmission lines and telecommunication towers. Both, nodes
and links (network components), can fail or vary their capacity levels. Assume an arbitrary
labeling of components L = {1,2, ..,a} such that a = nk +mk. We can represent mathemat-
ically such labeling by using one-to-one mappings ψ : Vk 7→ L for nodes and φ : Ek 7→ L
for links. Furthermore, we can model the capacity level ui of a component i ∈ L as a dis-
crete random variable taking values from the finite set {xi(1) < ... < xi(li)} with respective
probabilities {pi(1), ..., pi(li)}, with li representing the total number of states considered for
component i. The probabilities pi( j) represent the probability mass function (PMF) of compo-
nent’s i capacity levels. Such PMFs are discretized versions of component fragilities, which are
usually obtained from expert opinion, empirical models derived from observations, and com-
putational models. Moreover, we can represent the stochastic state of the system with a vector
X(v) = {x1(v1), ...,xa(va)}, where vi represents the index of component’s i capacity level. We
can use indifferently X(v) or v = {vi, ...,va} to represent the state of the infrastructure system.
We can define the state-space of the system Ω as the cross product:

Ω = ∏
i∈L
{1, ..., li}= {v = (v1, ..,va) : 1≤ vi ≤ li,∀i ∈L } (1)

Typically, xi(1) and xi(li) represent complete damage and no-damage, respectively. Thus, the
system’s ideal state is verified when v = {li, ..., la} and it will perform at its worst when
v = {1, ...,1}. It is important to note the hyper-rectangular structure of Ω. This structure has
been exploited by many set-theoretic decomposition algorithms to estimate network reliabil-
ity of binary systems. Furthermore, the generalization of the binary formalism is the multi-
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state system case, where set theoretic decomposition methods are often referred as state-space-
partition (SSP) methods [2]. Regardless of the infrastructure system under consideration, we
can value its performance at any state v ∈Ω using an infrastructure utility function uk(v) linked
to a performance metric [14]. Thus, by setting a desired performance threshold Dk, we can
define the system’s infeasible domain as I = {v : uk(v) < Dk} and its feasible domain as
F = {v : uk(v) ≥ Dk}. In practice, uk(v) can measure the number of served costumers by a
power distribution network, or an inverse relation to customer disconnections and travel times
in telecommunication networks and transportation networks, respectively. We can define net-
work reliability r(Gk) of the stochastic system Gk as follows:

r(Gk) = Pr[v ∈F ] = 1−Pr[v ∈I ] (2)
Estimating r is an NP-Hard problem [23, 21], which means that an algorithm that estimates
r exactly runs in exponential time as a function of the size of the input. Thus, approximation
algorithms and sampling schemes have been proposed to obtain estimates of r that are useful in
practice [13, 6, 11]. Also, Markov Chain Monte Carlo methods have been used for the network
reliability problem, but without guarantees in the quality of approximation [24]. In any case,
approximation and sampling algorithms can require a prohibitive number N of uk(v) evalua-
tions. In general, the problem of evaluating uk(v) can be casted to a mathematical optimization
problem that is often difficult to solve as a becomes large. Thus, methods that keep the num-
ber of uk(v) evaluations to a minimum and offer guarantees of approximation while scaling to
real-world applications are in high-demand.
The following subsections generalize the single infrastructure formalisms discussed above to
the system-of-systems case and introduce a new method for estimating the reliability of inter-
connected systems.

2.2 Systemic Reliability Assessment of Interdependent Lifeline Systems (RAILS)
LSs are part of the built environment that is pillar to the well-being of communities. As such,
an accurate model needs to consider their combined performance to contingencies in the face of
community needs and social expectations [18]. We begin this section by extending the previous
notation to the system-of-systems case. Consider a set of infrastructures K, each composed of
stochastic systems Gk(Vk,Ek) with set of nodes Vk and set of links Ek for all k ∈ K. The en-
semble of stochastic systems is denoted G(V,E), with set of nodes V =

⋃
k∈K Vk and set of links

E =
⋃

k∈K Ek. As before, let us consider an arbitrary labeling of components L = {1, ...,a}with
a = |V |+ |E|, and one-to-one mappings ψ : V 7→L for nodes and φ : E 7→L for links. Also,
component capacity levels ui for all labeled components i ∈ L are modeled as discrete random
variables taking values from the finite sets {xi(1) < ... < xi(li)} with respective probabilities
{pi(1), ..., pi(li)} for all i ∈L . Once more, we can represent the stochastic state of the system
with a vector X(v) = {x1(v1), ...,xa(va)}, where vi represents the index of the capacity level of
component i ∈L . We can use indifferently X(v) or v = {vi, ...,va} to represent the state of G
and its state-space as defined by Eq. 1. Furthermore, consider appropriate performance metric
thresholds Dk for all k ∈K and the structure function SFk(v) that outputs 0 when uk(v)<Dk and
1 otherwise, where uk(v) measures the utility or performance of infrastructure k ∈ K. A simple
extension of the structure function to the system-of-systems case is SF(v) =∏k∈K SFk(v). How-
ever, the simplicity of SF(v) in this form comes with the drawback of needing input from an
interdisciplinary body of experts that can establish acceptable performance level thresholds Dk
for all infrastructures k ∈ K in the aftermath of a crisis. We can estimate the systemic reliability
R(G) of the LSs’ ensemble G as follows:

R(G) = Pr[SF(v) = 1] = 1−Pr[SF(v) = 0] (3)
Estimating R(G) is also NP-Hard, since G can be reduced to the single infrastructure case. Note
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that while the findings of this study can be used in the single but larger infrastructure case, the
reminder of this section is devoted to the computation of interdependent R(G).

2.3 State-Space-Partition Methods for RAILS
The challenge of computing R(G) resides in the high dimensionality of the problem (a = |V |+
|E|) and the limited number of utility function evaluations that can be afforded with modern
computational resources. When a is not too large, theoretical methods can be used to derive
tight bounds on R(G) as well as importance metrics to rank component importance [16]. On
the other hand, when a is large, sampling methods seem to be the only option to LS modelers.
Nevertheless, state-space-partition (SSP) methods can be used to derive sampling schemes that
can be orders of magnitude faster than simulation-only methods [7, 13]. In addition to this, when
evaluating R(G) to different hazard scenarios such as in seismic risk assessment, decomposition
methods prove even more profitable than simulation as previous decomposition results can be
reutilized [20].

2.3.1 State-Space-Partition Methods

SSP methods are set-theoretic methods that generalize binary state decomposition methods (e.g.
[8]) to the case of multi-state systems [2, 7]. The main strategy of SSP methods is to decompose
Ω into disjoint sets of feasible and infeasible states. Before describing SSP methods in detail,
we will first fix some notation. The infeasible domain I = {v : SF(v) = 0} can be written
as the union of disjoint infeasible sets Ii ∈ I enumerated using a SSP method. Similarly, the
feasible domain F = {v : SF(v) = 1} can be expressed as the union of disjoint feasible sets
Fi ∈ F derived with an SSP method too. Furthermore, we can describe a hyper-rectangular
subset S⊆Ω by its vertices α(S) and β (S) such that αi(S)≤ βi(S) for all i∈L . For brevity we
use the notation [α(S),β (S)] to refer to the set S= {v : α(S)≤ vi≤ β (S),∀i∈L }. For example,
we can describe the state space Ω by its vertices α(Ω) = (1, ..,1) and β (Ω) = (l1, .., la) which
represent the states in which components are set to their minimum and maximum capacity
levels, respectively. We can compute the probability Pr[v ∈ S] provided that S has a hyper-
rectangular structure as follows:

Pr[v ∈ S] = ∏
i∈L

β (s)

∑
j=α(S)

pi( j) (4)

where pi( j) is the probability of component labeled i ∈ L being at capacity level xi( j) as
defined in the previous subsection. Thus, for component capacity levels with valid PMFs,
Eq. 4 yields Pr[v ∈ Ω] = 1. In general, SSP methods will decompose an input state-space
U j−1 (for example, U0 = Ω) in two fashions.The feasible-based approach: U j−1 = Fj ∪U j,
where U j = U j−1 \ Fj. Or, the infeasible-based approach: U j−1 = I j ∪U j, where, similarly,
U j =U j−1 \ I j, and this represents an unexplored subset of Ω [7]. Also, Fj and I j are determined
by finding “deeper” states within U j−1 and leveraging on the properties of coherent systems.
For the feasibility-based case assume that a system state v0 is known such that SF(v0) = 1 and
αi(U j−1)≤ v0

i ≤ β (U j−1) for all i ∈L . Then, a candidate for Fj is [v0,β (U j−1)] and we move
such a set to the list of disjoint feasible sets F . We are left with U j to be determined. Note that
U j is not guaranteed to be hyper-rectangular, however, we can partition U j into disjoint sets U j

i
that have hyper-rectangular structure as shown in Eq. 5.

U i
j = {v ∈Ω :v0

k ≤ vk ≤ βk(U j−1) for k < i,

αi(U j−1)≤ vi < v0
i for k = i, (5)

αk(U j−1)≤ vk ≤ βk(U j−1) for k > i}, i ∈L

An important remark from Eq. 5 is that for every SSP iteration there will be at most a subprob-
lems U i

j, however, some sets U i
j may be empty. In particular, for any i ∈L that αi(U i

j) = v0
i ,

1730



Eq. 5 will output an empty set. Each non-empty subset U i
j is moved to a list of disjoint unex-

plored subsets U . Next, we subtract a subproblem from the list U and use the decomposition
process that was just outlined until U is empty, ergo Ω is fully partitioned. Note that at some
iteration j− 1 we may find no “deeper point” v0 since the whole set U j−1 is infeasible. In
such cases we shall move this set to the list of disjoint infeasible sets I. While carrying on this
decomposition, the following bounds on systemic reliability are unraveled:

F

∑
Fi

Pr[v ∈ Fi]≤ R(G)≤ 1−
I

∑
Ii

Pr[v ∈ Ii] (6)

Note that an infeasible-based partition follows symmetrically from the procedure outlined
above. In practice, SSP methods will not always converge and thus the goal is to keep bounds
in Eq. 6 sufficiently small. By prioritizing the exploration of subsets Ui ∈ U based on their
probability, this convergence can be accelerated; however, a processing scheme different from
the Last-In-First-Out (LIFO) policy can result in a intractably large list of unexplored sets U .
Thus, researchers have proposed to prioritize the selection of sets whenever possible and re-
vert to a LIFO processing scheme if |U | becomes too large [7]. We adopt this strategy in our
computational experiments.

2.3.2 An Improved State-Space-Partition Approach

From the literature, there seems to be no definitive answer in regards to what SSP method
will perform best given an arbitrary stochastic system Gk and threshold level Dk. When the
performance threshold Dk is close to the maximum performance level of an infrastructure k,
feasibility-based methods perform efficiently in practice [2]. On the other hand, when link reli-
abilities are low, empirical studies favor infeasible-based partitions as evidenced in the case of
s-t network reliability [17]. This represents a challenge when selecting a SSP method that is ef-
fective for an ensemble of infrastructures with different reliabilities and performance thresholds.
As an attempt to select a suitable SSP method for estimating systemic reliability, we propose
a new approach that combines both, derivation of feasible and infeasible sets at the same time.
We term the new approach Alternating State-Space-Partition (ASSP). Our approach begins by
finding a state vI such that SF(vI) = 0 and such that raising any capacity level would cause
the system-of-systems to become feasible. Then, we use analog version of equation Eq. 5 to
find the complementary unexplored subsets. Moreover, for each unexplored subset, we remove
a feasible set and find complementary unexplored subsets using equation Eq. 5. For an input
subset U j−1 an ASSP algorithm consists of the following:

U j−1 = I j∪
⋃

i′∈L
(F i

j ∪
⋃

i∈L
U (i′,i)

j ) (7)

Here, each iteration of an ASSP algorithm yields one infeasible set I j, at most a feasible sets

F i′
j , and at most a2 unexplored subsets U (i′,i)

j . The increased number of unexplored subsets can
become an issue when sets are prioritized, however; it is still manageable by reverting to a
LIFO decomposition policy if necessary. Another remark is better explained with a motivating
example; consider the case of connectivity between nodes s and t in a single binary network
system. Efficient algorithms to enumerate the list of independent paths can be found elsewhere.
For each independent path we can reduce the capacity level of one link belonging to the path
while keeping remaining links to their maximum capacity levels, hence we find a minimum
cut-set (Menger’s theorem). Then, for each unexplored subset generated using analog of Eq. 5,
we can match an independent path solution and its respective path-set by keeping the capacity
levels in the path to their maximum while all others are lowered to their minimum. Thus, in a
single iteration of an ASSP algorithm we can compute at most (1+ a) subsets that contribute
to shrinking bounds in Eq. 6 with little computational effort. This concept can be extended
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to feasible flow problems using the minimum-cut maximum-flow theorem [4]. Also, ASSP
algorithms show remarkable improvement over strictly feasibility-based and strictly infeasible-
based partitions as evidenced by our computational experiments in Section 4.

2.3.3 Importance and Stratified Sampling (ISS) Scheme

The performance of an SSP algorithm can be measured by the probability content in the unex-
plored sets in U . In practice, a SSP algorithm may not converge to the desired precision. In such
cases, one can derive an estimator of R(G) by taking ni samples vk ∈Ui for each unexplored
subset Ui ∈U , and estimate the probability of success when sampling from Ui as follows:

Ri(G) =
∑ni

k=1 SF(vk)

ni
(8)

An estimator of R(G) using this importance and stratified sampling (ISS) scheme is as follows:
ˆR(G) = ∑

Fi∈F
Pr[v ∈ Fi]+ ∑

Ui∈U
Pr[v ∈Ui]Ri(G) (9)

We refer the reader to the literature for more details on this estimator[7]. When estimating R(G)
from Eq. 9 one can adopt Monte Carlo Sampling schemes with approximation guarantees [13].
We will used this estimator whenever the bounds in Eq. 6 do not converge to a desired precision.

2.3.4 Application Key Development: Feasible Flows in Interconnected Lifeline Systems

In this paper we will consider the problem of feasible multi-commodity flows in interconnected
infrastructures k ∈ K subject to node and link failures while thriving to guarantee performance
levels Dk. Besides of the multi-commodity setting, this problem differs from the classical fea-
sible flow reliability problem [2] because of the additional constraints on nodes of meeting
certain demands in order to be functional [20]. More specifically, we will consider stochastic
infrastructures Gk(Vk,Ek) with Vk and Ek as defined above, and the system-of-systems ensemble
G(V,E) as defined above. Moreover, components have have capacity levels uψ(i) for all nodes
i ∈ Vk and infrastructures k ∈ K, and capacity levels uφ(i, j) for all links (i, j) ∈ Ek and infras-
tructures k ∈ K. The one-to-one mapping functions ψ and φ map components to their labels
l ∈L remain as defined above. Furthermore, each infrastructure k ∈ K has an associated set
of commodities Lk and each node i ∈ K has a demand bi,l . When bi,lk > 0, we say that node
i ∈V is a costumer of commodity lk ∈ Lk. Conversely, when bi,lk < 0 we say that node i ∈V is
a supplier of commodity lk ∈ Lk, and a transshipment node otherwise. Certain nodes i ∈V will
require satisfying demands b′i,lk > 0 to function properly and their capacity level will be factored
by their functionalities wi ∈ {0,1}. In addition to this, flows f(i, j),lk of commodity lk ∈ Lk can
traverse links (i, j) ∈ Ek∀k ∈ K. The favorable performance of the system-of-systems is verified
when dk ≥ Dk for all infrastructures k ∈ K, where dk is the sum of flow of commodities lk ∈ Lk
reaching costumer nodes. We can formulate the previous problem as a Mixed Integer Program
(MIP); however, let us first consider the following reductions. Assume link costs ci, j = 0 for
all links (i, j) ∈ E. In order to maximize performance of the system-of-systems, for each in-
frastructure Gk(Vk,Ek) introduce a super source node sk and a super sink node tk, and introduce
fictitious link (tk,sk) with unbounded capacity uφ(tk,sk) = ∞ and negative cost ctksk = −1[1].
The set of labels L is extended with any newly added component. For every demand bi,lk > 0
and b′i,lk > 0 in node i ∈ V , we will introduce a fictitious link with deterministic capacity level
uφ(i,tk) = bi,lk and null cost. Also, for every supply node i ∈ V , we will introduce a fictitious
link with deterministic capacity level uφ(sk,i) = −bi,lk and null cost. The MIP formulation of
this problem is shown in Eqs. 10. Despite being written as a minimization problem, the ob-
jective function in (10) maximizes the performance of G because of negative costs of links
(tk,sk) ∈ Ek,∀k ∈ K. The first set of constraints (10b) ensures flow balance at every node. The
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set of constraints (10c-d) ensures that the total amount of commodities does not exceed links’
capacities while considering the functionality of end-nodes. The set of constraints (10e) ensures
that the total amount of commodities traversing a node does not exceed its capacity level. The
set of constraints (10f) ensures that the functionality of nodes is constrained by the satisfaction
of demands b′ilk . Finally, the set of constraints (10g) ensures non-negativity of flows.

Min ∑
k∈K

∑
(i, j)∈Ek

∑
lk∈Lk

ci j fi jlk (10a)

s.t. ∑
j:(i, j)∈Ek

fi jlk− ∑
j:( j,i)∈Ek

f jilk = 0, ∀i ∈V,∀lk ∈ Lk,∀k ∈ K (10b)

∑
lk∈Lk

fi jlk ≤ uφ(i, j)wi ∀(i, j) ∈ Ek,∀k ∈ K (10c)

∑
lk∈Lk

fi jlk ≤ uφ(i, j)w j ∀(i, j) ∈ Ek,∀k ∈ K (10d)

∑
k∈K

∑
j:(i, j)∈Ek

∑
lk∈Lk

fi jlk ≤ uψ(i)wi ∀i ∈V (10e)

wib′ilk ≤ fitklk ∀lk ∈ Lk,∀k ∈ K,∀i ∈V (10f)

fi jlk ≥ 0 ∀lk ∈ Lk,∀(i, j) ∈ Ek,∀k ∈ K (10g)
In the following sections, we will use the formulation in (10) to assess the performance of inter-
connected LSs and derive importance measures. For a more detailed description of the problem,
its Mixed Integer Program (MIP) formulation, and how to use Eqs. 10 to derive “deeper” feasi-
ble or infeasible states we refer the reader to the work by the authors [20].

2.4 Importance Measures in RAILS
An attractive feature of non-simulation methods is that importance measures are readily avail-
able after partitioning a system into feasible and infeasible subsets with known probabilities.
Here we provide approximations to importance measures in the literature [16] and extend them
to the multi-state and systemic case based on the state-space partition of R(G).

2.4.1 Systemic Reliability Sensitivity

Note that provided a full partition of Ω, Equations 6 and 4 provide polynomial functions in
terms of capacity level probabilities pi( j) for all labeled components i ∈L and capacity levels
{1, .., li}. For simplicity, let us express those probabilities as pi j with i and j as described above.
Thus, we can compute partial derivatives of the polynomials to estimate component capacity
level sensitivities. Note that the total probability theorem implies that, for every component,
there is a dependent variable. Let us arbitrarily choose pi1 as the dependent variable. Thus,
pi1 = 1−∑li

j=2 pi j and the sensitivity of capacity level reliabilities pi j on systemic reliability
R(G) is as follows:

Si =
li

∑
j=2

∂R(G)

∂ pi j
=

li

∑
j=2

∑
Fk∈F

∂ Pr[v ∈ Fk]

∂ pi j
=−

li

∑
j=2

∑
Ik∈I

∂ Pr[v ∈ Ik]

∂ pi j
(11)

This metric evaluates the sensitivity of system reliability R(G) with respect to overall reliabili-
ties of component i ∈L .

2.4.2 Conditional Probability Importance Measure for Systemic Reliability

The second metric we consider is the conditional probability importance measure (CPIM)[22].
For the systemic reliability case, a labeled component i ∈L at capacity level j ∈ {1, ..., li} has
conditional probability importance measure CPIMi j as follows:

CPIMi j = Pr[vi = j|SF(v) = 1] =
Pr[v ∈F ∧ vi = j]

R(G)
=

∑Fk∈F Pr[v ∈ Fk∧ vi = j]
R(G)

(12)
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Figure 1: Realization of 2 8×8 grids with interdependency degrees Istr of 10%, 20% and 50%.

An estimator of the expression of the numerator in Eq. 12 can be obtained from Eq. 9 as follows:

∑
Fk∈F

Pr[v ∈ Fk : vi = j]+ ∑
Ui∈U

Pr[v ∈Ui]
∑ni

k=1 SF(vk)I(vk
i = j)

ni
(13)

where I(vk
i = j) is an indicator function that outputs 1 if vk

i = j and 0 otherwise. We adopt the
importance measures generalized in this subsection in our computational experiments.

3 Computational Experiments
In this section we conduct computational experiments using the newly proposed ASSP method.
In this study we will consider a set of synthetic networks with grid topology. Also, we will
consider various performance threshold levels Dk and different scenarios of interconnectivity
among infrastructure networks. We consider that both, links and nodes, can fail. For ease of
interpretation we will adopt two capacity levels for components, namely the cases of complete
damage and no-damage. Since we will need capacitated and interconnected systems with node
demands, we will use the following network model. First, define the number of infrastruc-
ture grids k ∈ K as well as their size n× n. Note that whit this model, the ensemble contains
|K|(n2 + 2(n− 1)n) components. Later on, simulate intra-node usages for each infrastructure
k ∈ K identifying them as customers, suppliers, etc. Also, for each infrastructure k ∈ K we se-
lect at random a percentage Istr of nodes and assign inter-demands b′i,l′k

such that k 6= k′ and
connect them to major consumer nodes j that are selected at random from infrastructure k′

by adding a directed interdependent link ( j, i) to E ′k with enough capacity to transport b′i,l′k
.

We selected as parameters 30% for the number of consumer and supplier nodes for each grid
k ∈ K. Also, the intensity of all intra-demands and supplies are set to 1, maximum capacity
level of links is set to 1 with probability 90%, and for nodes we adopt unbounded capacity
with probability 95%. When components fail, their capacity levels are assumed to be 0. Fig-
ure 1 shows a realization of the model described above in which we have incrementally added
inter-demands and interconnected links as Istr increases. In addition to the newly introduced
ASSP method, for comparative purposes we will used strictly feasible-based partition (F-SSP)
and strictly infeasible-based partitions (I-SSP). We used a high-performance cluster to conduct
experiments in parallel. Each node of the cluster had a 12-core 2.83 GHz Intel Xeon processor,
with 4GB of main memory, and each experiment was run on a single core. Each experiment
consisted of running one of the three SSP algorithms on realizations of the model described
above and used same magnitude of performance threshold Dk for each infrastructure k ∈ K. We
set as limit of computation 1,000 seconds. Figure 2 showcases reliability estimates and associ-
ated variance obtained using the ASSP method. As we expected, when performance thresholds
Dk increase we see a degradation of systemic reliability. Similarly, when interdependency levels
increase we see further decrease of R(G). From figure 2 we also note that there is a transition
phase in the systemic reliability R(G). Identifying such transitions in critical infrastructure net-
works would shed light on whether reducing interdependencies (by providing backup systems)
or increasing system-capacity would be more cost-effective to shift the systemic reliability of
the system to a safe level. A last remark from figure 2 is that in the transition region we verify
an increase of variance on the R(G) estimator. In our experiments, ASSP yielded the tightest
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Figure 2: Systemic R(G) for two 8×8 grids and associated variances for different Dk and Istr values
using ASSP (Left and center). Logarithm (base 10) of the ratio of variance using FSSP over using ASSP.

bounds with respect the to other SSP methods. For small networks the variance reduction of
ASSP with respect to other SSP methods was of several orders of magnitude (e.g. Fig. 2-Right).
However, this trend reduced as the size of network increased while keeping the time threshold
of 1,000 seconds constant. Also, for ensemble of grids above 10−by−10 the gap Pr[vk ∈U ]
was in the order of 0.7, and thus it resulted in very little gain in terms of variance reduction with
respect to simulation.

4 Conclusions
In this paper we proposed an efficient analytical partitioning method termed the Alternating
State Space Partition (ASSP) method and used an importance and stratified sampling (ISS)
approximation scheme for systemic Reliability Assessment of Interdependent Lifeline Systems
(RAILS). ASSP outperforms strictly feasible-based and strictly infeasible-based partitions. One
of the main ideas in our ASSP approach is that of deriving large feasible and infeasible sets
while solving one instance leveraging in the duality of the minimum-cut maximum flow theo-
rem. In addition to this, we extended available importance measures in the literature to multi-
state components and systemic reliability. The exact and theoretically bounded by-products of
the RAILS framework contributes to measurement science in the context of infrastructure sys-
tems [12]. Further research should be devoted towards improving ASSP algorithms and testing
with larger sets as well with real world benchmarks. Also, adding more system physical proper-
ties such as correlations, back up systems and recovery actions would augment the applications
of this method. Finally, an in depth analysis of performance metrics that can be derived using
SSP algorithms would definitely provide new perspectives of element ranking for protection
and retrofitting in the context of interdependent systems and their resilience.
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